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Abstract: The growing demand for sustainable energy,along with advancements in renewable technologies, has led 

to the emergence of hybrid renewable microgrids (HRMGs) as a promising solution for enhancing energy security, 

reliability, and environmental performance. This review provides a comprehensive assessment of current strategies 

for component-specific modeling, optimization, and integration of HRMGs into the main power grid. First, the study 

categorizes key components of HRMGs, including solar photovoltaic systems, wind turbines, energy storage 

systems, and backup generators, and analyzes state-of-the-art modeling techniques tailored to each. The review then 

explores advanced optimization methods ranging from classical algorithms to artificial intelligence and 

metaheuristic approaches for system sizing, energy management, and cost minimization. Furthermore, it examines 

the technical, economic, and regulatory aspects of grid integration, highlighting interoperability challenges, control 

strategies, and standards for seamless operation. Special attention is given to the role of real-time data analytics and 

smart grid technologies in enhancing system adaptability and resilience. The paper concludes by identifying research 

gaps and recommending future directions for developing more robust, scalable, and intelligent HRMGs frameworks 

aligned with grid modernization goals. 
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Introduction 

 

The global transition toward cleaner and more sustainable energy systems has significantly increased interest in 

the deployment of Hybrid Renewable Microgrids (HRMGs) (Dawoud, Lin & Okba, 2018). These systems integrate 

multiple renewable energy sources such as solar, wind, and biomass with energy storage units and conventional 

backup generators, offering a decentralized, flexible, and environmentally friendly alternative to traditional 

centralized power generation (Ajiboye et al., 2023) HRMGs are particularly effective in enhancing energy access in 

remote areas, improving power reliability, and reducing greenhouse gas emissions (Khan et al., 2025). 

As the complexity of these systems grows, so does the need for precise and robust modeling of individual 

components (Bihari et al., 2021). Component-specific modeling enables accurate prediction of system behavior, 

facilitates optimal design, and supports reliable operation under varying load and environmental conditions 

(Chouhan et al., 2024). Moreover, the integration of renewable microgrids with the main utility grid presents both 

https://orcid.org/0009-0005-1379-0384


Res. J. Engin. Tech. Vol., 2 (1), 47-72, 2025 

48 

 

opportunities and challenges. On one hand, it can enhance grid resilience, reduce transmission losses, and enable 

demand-side management (Khan et al., 2025; Wang et al., 2010). On the other hand, it introduces issues such as 

voltage instability, power quality concerns, and the need for advanced control and communication mechanisms 

(Azeem et al., 2021). 

Optimization plays a critical role in the planning, operation, and control of HRMGs. Modern optimization 

techniques, including mathematical programming, heuristic and metaheuristic algorithms, and machine learning-

based approaches, are increasingly being applied to address challenges related to sizing, economic dispatch, and 

energy management (Singh et al., 2024; Bouaouda & Sayouti, 2022). These tools help stakeholders strike a balance 

between economic efficiency, technical performance, and environmental sustainability (Murty, & Kumar, 2020). 

Furthermore, successful integration of HRMGs into the existing grid infrastructure requires consideration of 

several technical, regulatory, and operational factors. Real-time monitoring, smart grid technologies, adaptive 

control strategies, and standardized communication protocols are essential to ensure seamless coordination between 

the microgrid and the central grid (Reich & Oriti, 2021; Mohamed et al., 2022; Gao et al., 2023). A systematic 

understanding of these aspects is vital to unlock the full potential of HRMGs in modern energy systems (Barik, 

Jaiswal & Das, 2022; Hernández-Mayoral et al., 2023). 

This review aims to provide a holistic and critical assessment of the latest strategies for component-level 

modeling, optimization, and integration of HRMGs. By synthesizing recent developments, identifying prevailing 

challenges, and highlighting future directions, this paper seeks to contribute to the advancement of intelligent and 

sustainable microgrid solutions for a resilient global energy future. 

 

 

Review Methodology 

 

This study employs a systematic review methodology to analyze and synthesize the latest advancements in 

component-level modeling, optimization, and integration strategies for Hybrid Renewable Microgrids (HRMGs) 

(Dawoud, Lin & Okba, 2018; Ajiboye et al., 2023). The review process adheres to established guidelines to ensure 

transparency, reproducibility, and rigor (Khan et al., 2025). 

 

Literature Search Strategy 

An extensive literature search was conducted using multiple academic databases, including Scopus, IEEE 

Xplore, and ScienceDirect (Bihari et al., 2021). The search was limited to publications from 2009 to 2025 to capture 

the most recent developments in the field (Wang et al., 2010). Core keywords such as "Hybrid Renewable 

Microgrid," "optimization techniques," "component modeling," and "grid integration" were used in various 

combinations to identify relevant studies (Azeem et al., 2021). 

 

Inclusion and Exclusion Criteria 

The selection criteria for included studies were as follows: 

Inclusion Criteria: 

1.Studies focusing on HRMGs with an emphasis on modeling, optimization, or integration (Dawoud, Lin & 

Okba, 2018; Singh et al., 2024).  

2.Publications that present novel methodologies or significant advancements in the field (Bouaouda & Sayouti, 

2022). 

3.Peer-reviewed journal articles, conference papers, and reputable technical reports (Ajiboye et al., 2023). 

Exclusion Criteria: 
1.Studies not directly related to HRMGs or those focusing solely on theoretical aspects without practical 

applications (Barik, Jaiswal & Das, 2022) 

2.Publications prior to 2009 to maintain the relevance and timeliness of the review. 

 

Data Extraction and Analysis 

Data from the selected studies were extracted systematically, focusing on key aspects such as: 

1.Types of renewable energy sources integrated into HRMGs (Ajiboye et al., 2023; Bihari et al., 2021). 

2.Optimization techniques employed (e.g., metaheuristic algorithms, artificial intelligence methods) (Dawoud, 

Lin & Okba, 2018; Bouaouda, & Sayouti, 2022). 

3.Modeling approaches for individual components (e.g., photovoltaic systems, battery storage) (Singh et al., 

2024). 

4.Strategies for grid integration and hybrid operation modes (Khan et al., 2025; Azeem et al., 2021). 
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The extracted data were then categorized and analyzed to identify trends, gaps, and emerging areas of research 

(Dawoud, Lin & Okba, 2018; Khan et al., 2025; Barik, Jaiswal & Das, 2022). 

 

Quality Assessment 

To ensure the reliability and validity of the included studies, a quality assessment was performed based on 

established criteria (Ajiboye et al., 2023; Singh et al., 2024), such as: 

1.Methodological rigor and clarity. 

2.Relevance to the research questions. 

3.Contribution to advancing knowledge in the field. 

Studies that met these criteria were included in the final analysis (Dawoud, Lin & Okba, 2018; Ajiboye et al., 

2023; Bihari et al., 2021). 

 

 

Hybrid Renewable Microgrids (HRMGs) 

 

Definition and Architecture 

Hybrid Renewable Microgrids (HRMGs) are decentralized power systems that integrate multiple renewable 

energy sources (e.g., photovoltaic (PV) panels, wind turbines, small hydro units, biomass, hydrogen fuel cells) with 

energy storage systems (ESS) such as batteries, flywheels, and supercapacitors. In some cases, dispatchable backup 

sources such as diesel or natural gas generators are included to ensure supply reliability during prolonged renewable 

scarcity (Lasseter, 2011; Alzahrani et al., 2022; Jafari Kaleybar et al., 2024; Kushwaha & Bhattacharjee, 2023). 

An HRMG can operate in two primary modes: 

Grid-connected mode, in which the microgrid exchanges energy with the main utility grid, exporting surplus 

generation or importing power to balance local deficits. 

Islanded mode, in which the microgrid disconnects from the utility grid and relies entirely on its internal 

resources. 

To enable seamless transitions between these modes, HRMGs employ hierarchical control strategies. 

Typically, the control architecture is divided into primary control (real-time voltage and frequency stabilization), 

secondary control (restoring nominal setpoints), and tertiary control (optimizing power exchange with the main grid) 

(Shaikh et al., 2021; Guerrero et al., 2012; Draz, Othman, & El-Fergany, 2024; Yadav, Kumar, & Kumar, 2025).  

 

 
Figure 1. Illustrates a generalized schematic of HRMGs architecture, including energy sources, storage systems, 

converters, point of common coupling (PCC), and control layers 

 

Benefits 

HRMGs provide several key advantages: 

1. Energy security and resilience: By diversifying energy sources and enabling islanded operation, HRMGs 
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enhance supply continuity during grid disturbances (Catalán Navarro et al., 2025). 

2. Environmental sustainability: High penetration of renewable energy sources contributes to carbon emission 

reduction and supports global decarbonization goals (Paraschiv & Paraschiv, 2023). 

3. Economic efficiency: Local generation, optimal resource dispatch, and reduced transmission losses lower 

operational costs over the system’s lifecycle (Bissiriou et al., 2025). 

4. Flexibility and scalability: Modular system design enables expansion to meet growing load demands and 

facilitates integration of emerging technologies (Zhang & Wei, 2022). 

 

Challenges 

Despite their promise, HRMGs face several challenges: 

1. Intermittency of renewables: Variable solar and wind generation requires advanced forecasting and energy 

storage strategies (Lafuente-Cacho et al., 2025). 

2. Optimal sizing and configuration: Multi-objective optimization is needed to balance technical, economic, 

and environmental criteria (Dvijotham, Backhaus & Chertkov, 2011). 

3. Power quality and stability: Voltage/frequency deviations and harmonic distortions must be mitigated 

through robust control algorithms (Conde, Demition & Honra, 2025). 

4. System complexity: Coordinating heterogeneous resources with different dynamic behaviors increases 

design and operational complexity (Nkounga, Ndiaye & Ndiaye, 2022). 

5. High capital investment and regulatory barriers: The lack of standardized policies, financial incentives, and 

skilled personnel hinders widespread deployment (How energy storage is solving the intermittency problem in 

renewables) 

 

Applications and Policy Context 

HRMGs are increasingly deployed in: 

Remote and off-grid communities, where they provide reliable electricity access and reduce dependence on 

imported fuels (Agupugo et al., 2022). 

Urban smart grids, enhancing resilience, flexibility, and renewable integration (Gellings, 2020).  

Climate-vulnerable regions, supporting disaster preparedness and recovery (Akinsooto, Ogundipe & Ikemba, 

2024). 

Policy frameworks and financial instruments such as feed-in tariffs, renewable energy credits, green bonds, and 

public-private partnerships are critical for enabling large-scale adoption (Thapar, 2024). Continued advances in 

power electronics, communication technologies, and artificial intelligence based energy management systems 

(EMS) are expected to further enhance the viability and cost-effectiveness of HRMGs (Energypedia. n.d.). 

 

 
Figure 2. Grid-connected vs. islanded operation, PCC, renewable sources, storage units, backup generation, 

converters, and hierarchical control layers 
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Component-Specific Modeling Approaches in Hybrid Renewable Microgrids 

 

Effective component-level modeling forms the foundation of hybrid renewable microgrids (HRMGs) design, 

optimization, and operational planning. Each component within a microgrid renewable energy sources (such as solar 

PV and wind turbines), energy storage systems (like batteries or supercapacitors), electrical loads, and backup 

generators exhibits unique dynamic behavior, operational constraints, and performance characteristics. Accurately 

modeling these components is essential to capture their real-time interactions, support realistic and high-fidelity 

simulations, and enable the development of robust energy management strategies. Moreover, precise component 

modeling allows for better forecasting, improved system stability, cost-effective operation, and seamless integration 

of intermittent energy sources, ultimately ensuring the reliable and efficient performance of HRMGs under varying 

conditions (Kotian & Ghahremanlou, 2024; Zhang, Shah, & Papageorgiou, 2019). 

 

Modeling of Renewable Energy Sources 

a) Photovoltaic (PV) Systems: 

Photovoltaic (PV) systems are generally characterized and modeled based on the current–voltage (I–V) 

behavior of solar cells. These I–V characteristics are directly influenced by environmental and intrinsic parameters 

such as solar irradiance, cell temperature, series resistance (Rs), and shunt resistance (Rsh). 

1.Solar irradiance: Higher irradiance increases the photocurrent and consequently the generated power, while 

reduced irradiance leads to a proportional decrease in output power and a shift in the maximum power point (MPP) 

(Villalva et al., 2009). 

2.Cell temperature: Temperature strongly affects the open-circuit voltage (Voc). An increase in temperature 

decreases Voc and overall efficiency, making accurate thermal modeling essential (Belhadj et al., 2025). 

3.Series resistance (Rs): High series resistance introduces internal voltage drops, reducing the fill factor (FF) 

and system efficiency. 

4.Shunt resistance (Rsh): Low shunt resistance increases leakage currents, reduces voltage, and degrades 

efficiency (Ishaque & Salam, 2011). 

To accurately capture these dependencies, various modeling approaches have been developed. Equivalent 

circuit models particularly the single-diode and double-diode models are the most widely used, as they provide a 

balance between accuracy and computational complexity. 

1.The single-diode model is the simplest and most commonly adopted approach, assuming a dominant 

recombination mechanism within the cell. Owing to its simplicity and reliability, it is extensively applied in MPPT 

design, rapid system simulations, and inverter-level analysis (Villalva et al., 2009; Belhadj et al., 2025). 

2.The double-diode model includes an additional diode to represent recombination both in the bulk and 

junction regions, thereby enhancing accuracy under low irradiance and elevated temperature conditions. Although 

parameter extraction is more complex, this model is preferred in research and detailed cell-level studies (Ishaque & 

Salam, 2011). 

3.Empirical and data-driven models, built on experimental or field data, employ statistical curve-fitting or 

machine learning algorithms to approximate PV behavior without solving complex semiconductor equations. These 

approaches are particularly effective for large-scale PV plant simulations, grid integration studies, and predictive 

MPPT optimization, provided that sufficient and diverse data are available (Hameed Al-Hamzawi et al., 2025). 

To clarify the assumptions, accuracy, parameter extraction complexity, and application scope of different 

modeling approaches, Table 1 presents a detailed comparative summary of PV models. 

 

Table 1. Comparative summary of PV modeling approaches based on assumptions, accuracy, parameter extraction, 

and applications 

Model 

Type 

Key 

Assumpti

ons 

Accura

cy 

Sensitivity to 

Temperature 

and Irradiance 

Paramet

er 

Extracti

on 

Advantage

s 

Limitation

s 

Typical 

Applicatio

ns 

Refere

nces 

Single-

Diode 

Model 

One 

dominant 

recombina

tion 

mechanis

m; 

modeled 

Good 

under 

standar

d test 

conditio

ns 

(STC) 

Accurately 

captures 

irradiance 

effects; 

moderate 

accuracy under 

temperature 

Moderate

; 

paramete

rs 

extracted 

from I–V 

curves 

Simple, 

computatio

nally fast, 

widely 

used 

Lower 

accuracy 

under low-

light and 

high-

temperature 

conditions 

Module-

level 

simulation, 

inverter 

design, 

real-time 

MPPT 

(Villalv

a et al., 

2009; 

Belhadj 

et al., 

2025) 
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Model 

Type 

Key 

Assumpti

ons 

Accura

cy 

Sensitivity to 

Temperature 

and Irradiance 

Paramet

er 

Extracti

on 

Advantage

s 

Limitation

s 

Typical 

Applicatio

ns 

Refere

nces 

with one 

diode plus 

Rs and 

Rsh 

variation and 

datasheet

s 

implement

ation 

Double

-Diode 

Model 

Two 

independe

nt 

recombina

tion 

mechanis

ms (bulk 

and 

junction) 

modeled 

with two 

diodes 

High, 

particul

arly 

under 

low 

irradian

ce 

More precise 

representation 

under 

irradiance/temp

erature 

variation 

Complex

; requires 

iterative 

or 

optimizat

ion-

based 

techniqu

es 

High 

accuracy; 

robust for 

research 

and 

detailed 

analysis 

Computatio

nally 

expensive; 

parameter 

identificati

on 

challenging 

Advanced 

research, 

detailed 

thermal 

and cell 

analysis 

(Ishaqu

e & 

Salam, 

2011) 

Empiri

cal 

Models 

Based on 

fitting 

experimen

tal I–V 

data 

Mediu

m to 

high 

(depend

s on 

dataset 

quality) 

Locally 

accurate but 

limited 

generalization 

Easy; 

directly 

derived 

from 

measured 

data 

Very fast; 

requires 

minimal 

physical 

knowledge 

Limited 

extrapolatio

n beyond 

training 

conditions 

Quick 

performan

ce 

estimation, 

educationa

l use 

(Hamee

d Al-

Hamza

wi et 

al., 

2025) 

Data-

Driven 

/ AI 

Models 

Black-box 

representa

tion; 

relies on 

historical/

real-time 

data 

High 

with 

sufficie

nt and 

diverse 

data 

Captures 

nonlinear 

dependence on 

irradiance and 

temperature 

effectively 

Depende

nt on 

dataset 

size and 

diversity 

Very fast 

after 

training; 

scalable; 

adaptive 

Requires 

extensive 

datasets; 

lacks 

physical 

interpretabi

lity 

Large-

scale PV 

farm 

simulation, 

grid 

integration 

studies, 

predictive 

MPPT 

(Hamee

d Al-

Hamza

wi et 

al., 

2025) 

Simplif

ied 

Linear 

Models 

Linear 

approxim

ation 

between 

irradiance

, 

temperatu

re, and 

power 

output 

Low to 

medium 

Captures only 

first-order 

variations 

Minimal 

(few 

empirical 

coefficie

nts) 

Extremely 

simple; 

very low 

computatio

nal cost 

Poor 

accuracy; 

unsuitable 

for MPPT 

design 

Preliminar

y sizing, 

quick grid 

impact 

assessment

s 

(Villalv

a et al., 

2009) 

 

As Table 1 illustrates, the choice of model depends on the study objective, required accuracy, and 

computational constraints. 

1.The single-diode model provides the best trade-off between simplicity and accuracy, making it highly 

suitable for industrial applications and real-time MPPT algorithms. 

2.The double-diode model offers superior accuracy, especially under non-standard conditions, but entails 

higher computational complexity and more challenging parameter extraction. 

3.Empirical and data-driven models are ideal for fast and large-scale simulations, such as PV plant studies or 

grid integration analysis, though their accuracy strongly depends on the quality of available data. 

4.Simplified linear models are mostly used for preliminary studies or rough performance estimations, where 
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computational efficiency is prioritized over precision. 

Such diversity in modeling strategies enables researchers and engineers to select the most appropriate model 

based on application requirements ranging from detailed cell-level research to large-scale system optimization. 

b) Wind Turbines: 

Wind turbine modeling encompasses several interrelated domains, including aerodynamic performance, 

mechanical dynamics, and electrical generation. Aerodynamic characteristics are critical in determining the amount 

of kinetic energy extracted from the wind. For aerodynamic modeling, in addition to classical methods such as 

power curves and Blade Element Momentum (BEM) theory, more advanced models such as CFD and three-

dimensional aerodynamic models are also employed, considering blade geometry, pitch angle, wind speed, and 

transient conditions (Sun et al., 2016; Melani et al., 2024).  

The mechanical aspect involves the rotational dynamics of the rotor and drivetrain, taking into account inertia, 

friction, and shaft stiffness, which affect the transient response and system stability (Harizi, & Benhamed, 2023). 

The electrical generation system typically includes generators such as Permanent Magnet Synchronous 

Generators (PMSG), each with specific operational characteristics and control requirements. These generators are 

often combined with power electronic converters to enable variable-speed operation, grid synchronization, and 

power quality control (Van Minh, 2024). 

The overall power output of the turbine is generally modeled as a nonlinear function of wind speed, 

constrained by cut-in and cut-out wind speeds as well as the rated capacity of the turbine to ensure safe operation 

(Milan, Wächter & Peinke, 2014). 

To simulate realistic operating conditions, wind turbine models must also incorporate the stochastic nature of 

wind, including turbulence intensity and rapid wind speed fluctuations. These factors significantly influence 

transient dynamics, fatigue loads, and control system performance. Time series of real wind data or stochastic wind 

field models are often used for this purpose (Bhatt et al., 2023). 

Using such comprehensive modeling approaches is essential for the design, optimization, and control of wind 

turbines, enabling improved efficiency, reliability, and grid integration (Abootorabi et al., 2024). 

 

Table 2. Comparative Table of Wind Turbine Modeling Approaches 

Modeling 

Approach 

Key Assumptions Applications References 

Power Curve Uniform wind, steady flow Estimation of average power, 

preliminary design 

 (Milan, Wächter & Peinke, 2014; 

Bhatt et al., 2023; Abootorabi et al., 

2024) 

BEM Theory One-dimensional flow, 

limited blade twist 

Blade aerodynamic analysis, 

pitch angle optimization 

(Sun et al., 2016; Melani et al., 

2024) 

3D CFD Complex flow, turbulence Detailed aerodynamic 

analysis, transient load 

assessment 

(Sun et al., 2016; Melani et al., 

2024) 

PMSG 

Generator 

Permanent magnetic field, 

advanced control 

Variable-speed operation, 

grid integration 

(Van Minh, 2024) 

Stochastic 

Wind Field 

Temporal and spatial wind 

variations, turbulence 

Transient load analysis, 

control system design 

(Bhatt et al., 2023) 

 

c) Biomass, Fuel Cells, and Microturbines: 

Dispatchable energy sources, such as diesel generators, microturbines, and fuel cells, are typically modeled by 

considering their thermodynamic performance characteristics, including fuel consumption rates, startup and 

shutdown times, operational efficiencies, and emission profiles (Razmi et al., 2025; Al-Husban et al., 2025). Unlike 

intermittent renewable sources such as solar and wind, dispatchable units can adjust their power output on demand, 

providing a reliable and controllable supply of electricity essential for balancing supply and demand within 

microgrids (Kaldellis & Zafirakis, 2011; Juma, Ayeng'o & Kimambo, 2024). 

Biomass: 
Biomass conversion pathways include direct combustion, gasification, and biochemical processes, which can 

generate electricity, heat, or liquid and gaseous fuels. Conversion efficiency depends on the type of process and 

operating conditions, ranging from 20% to 40% for direct electricity generation (Tezer et al., 2022; Balopi et al., 

2025). Greenhouse gas and pollutant emissions also depend on the type of biomass and conversion technology. 

Fuel Cells: 

Key types include PEMFC, SOFC, and MCFC, each with distinct characteristics. For example, PEMFCs offer 
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fast response and relatively high efficiency but require pure hydrogen, while SOFCs have higher electrical and 

thermal efficiency but longer startup times (Barbir, 2012; Li, 2025). Modeling typically involves relationships 

between electrical current, cell voltage, temperature, and electrical load. 

Microturbines: 
Microturbines are small gas turbines that can operate on various fuels, including natural gas and biogas. They offer 

fast dynamic response, low maintenance, and compact size, although their overall efficiency is generally lower than 

large-scale systems (Belrzaeg et al., 2023; Saha & Kastha, 2010). 

Comprehensive modeling of these dispatchable units is essential for evaluating the economic and 

environmental performance of microgrids, allowing optimization of dispatch strategies, reduction of fuel 

consumption, and minimization of emissions, thereby improving overall system sustainability and cost-effectiveness 

(Olivares et al., 2014; Khan, Khan & Ahmad, 2025). 

 

Table 3. Comparative Table of Biomass, Fuel Cells, and Microturbines 

Technology Electrical 

Efficiency (%) 

GHG 

Emissions 

Dynamic 

Response 

Microgrid Applications References 

Biomass 20–40 Medium to 

low 

Moderate Electricity and heat 

generation, renewable fuels 

(Tezer et al., 

2022; Balopi et 

al., 2025) 

PEMFC 40–60 Low Fast Clean power source, load 

support, electric vehicles 

(Barbir, 2012) 

SOFC 50–65 Very low Slow Combined heat and power, 

industrial applications 

(Barbir, 2012; 

Li, 2025). 

Microturbine 25–35 Medium Fast Industrial and commercial 

microgrids, CHP 

integration 

(Belrzaeg et al., 

2023; Saha & 

Kastha, 2010) 

 

Modeling of Energy Storage Systems 
Energy storage systems (ESS), such as lithium-ion batteries, lead-acid batteries, flywheels, and 

supercapacitors, play a crucial role in mitigating the mismatch between electricity supply and demand, thereby 

enhancing the overall stability and reliability of power systems. These storage technologies enable load shifting, 

peak shaving, frequency regulation, and backup power supply, making them indispensable components in modern 

microgrids and renewable energy systems (Worku, 2022;  Gao & Lu, 2021; Jayakumar et al., 2022; Palau, Mane & 

Gomis-Bellmunt, 2025).  

Modeling ESS involves several important factors to accurately represent their performance and operational 

behavior. Charge and discharge efficiency directly influences the usable energy capacity and overall system 

efficiency, as energy losses occur during both processes. State of Charge (SoC) dynamics are critical for tracking 

available energy at any given time, ensuring proper management and control of the storage unit. Depth of Discharge 

(DoD) limits define the allowable range of battery depletion to prevent damage and extend lifespan. Additionally, 

internal losses due to resistance and parasitic reactions, as well as aging effects caused by repeated cycling and 

environmental conditions, significantly impact long-term performance and capacity degradation. Roundtrip 

efficiency, which measures the ratio of energy retrieved to energy stored, together with lifecycle degradation rates, 

are key parameters for evaluating the economic and technical viability of ESS technologies (Worku, 2022;  Gao & 

Lu, 2021; Jayakumar et al., 2022). Various modeling approaches are employed depending on the desired level of 

accuracy and computational complexity. Equivalent circuit models, often consisting of resistor-inductor-capacitor 

(RLC) networks, provide a balance between simplicity and fidelity, capturing voltage, current, and thermal 

behaviors. Electrochemical models delve deeper into the internal chemical processes and reactions within batteries, 

enabling precise predictions of performance and degradation over time. Recently, machine learning-based predictive 

models have emerged, leveraging large datasets to forecast system behavior under diverse conditions, thereby 

facilitating rapid simulations and adaptive control strategies. Integrating these modeling techniques enables 

researchers and engineers to optimize the design, operation, and management of energy storage systems within 

complex power networks (Calero et al., 2022; Tu et al., 2023; Wu & Balasingam, 2024; Yang et al., 2023). 
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Table 4. Comparative Table of Energy Storage Systems 

ESS 

Technology 

Charge/Dischar

ge Efficiency 

(%) 

Depth of 

Dischar

ge 

(DoD) 

State of 

Charge 

(SoC) 

Capacity 

Degradati

on 

Common 

Modeling 

Approaches 

Advantag

es 

Disadvantag

es 

Lithium-ion 

Battery 

85–95 80–90% Accurat

e 

High Equivalent 

circuit model, 

electrochemi

cal model 

High 

energy 

density, 

long cycle 

life 

High cost, 

temperature 

sensitivity 

Lead-acid 

Battery 

70–80 50–60% Modera

te 

Moderate Equivalent 

circuit model 

Low cost, 

mature 

technolog

y 

Low energy 

density, 

shorter 

lifespan 

Flywheel 85–90 100% Indirect Low Electro-

mechanical 

model 

Fast 

dynamic 

response, 

long 

lifespan 

Low energy 

density, high 

cost 

Supercapacit

or 

95–99 100% Indirect Low Equivalent 

circuit model 

Very fast 

response, 

long cycle 

life 

Low energy 

density, high 

cost 

 

Load Modeling 

Load profiles in microgrids typically consist of three main categories: critical loads, which require continuous 

and uninterrupted power supply (such as medical equipment and communication systems); non-critical loads, which 

can tolerate temporary interruptions without significant consequences (like lighting or certain appliances); and 

controllable or demand-responsive loads, which can be adjusted or shifted in time based on grid conditions or price 

signals. 

Accurate modeling of electrical demand must consider several key aspects. First, load consumption varies over 

time, following daily and weekly cycles influenced by human activities. Second, stochastic behavior arises due to 

unpredictable changes in user demand, appliance usage, and environmental factors. Third, seasonal variations 

significantly affect load patterns, especially in heating or cooling demands. Finally, demand response capabilities 

allow certain loads to be modulated or deferred, providing flexibility to balance supply and demand. 

To address these complexities, different modeling approaches are employed. Statistical models analyze 

historical consumption data to extract typical load profiles and quantify variations. These models help in 

understanding baseline demand but may not fully capture sudden changes or real-time fluctuations (Chan et al., 

2012; Zheng et al., 2025).  

More advanced methods utilize artificial intelligence and machine learning algorithms to develop adaptive 

models. These models process real-time data streams, weather forecasts, and occupancy information to predict short-

term load with higher accuracy. Additionally, AI-based models enable dynamic load shaping by controlling 

demand-responsive loads, thereby improving the microgrid’s operational efficiency and stability. 

This combination of detailed classification and advanced modeling techniques allows for precise representation 

of load behavior, which is critical for optimizing microgrid performance and implementing effective demand-side 

management strategies (Silva, Khan & Han, 2020). 

 

Modeling of Backup Generators 

Diesel and natural gas generators are commonly used as backup sources in hybrid renewable microgrids 

(HRMGs) to ensure stability and continuous power supply during periods of reduced or interrupted renewable 

energy generation. The models of these generators include various parameters that reflect their actual performance. 

One of the key parameters is the fuel consumption curve, which relates the load demand to fuel consumption and is 

essential for estimating operational costs and optimizing fuel usage. Additionally, ramp rates indicating how quickly 

the generator can increase or decrease its output power are incorporated to account for technical constraints on rapid 

load changes (IRENA, 2021; Brooklyn Microgrid Project, 2019). 

Furthermore, minimum up and down times are included in the models to prevent frequent start-stop cycles that 
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can cause equipment wear and reduce lifespan. Operational costs encompass fuel expenses, maintenance, and other 

related costs, forming a significant part of the modeling framework. Emission levels, especially for diesel 

generators, are also modeled accurately to assess environmental impacts and ensure compliance with regulations. 

For energy optimization studies and long-term planning, simplified linear or piecewise-linear models are often 

used because they facilitate faster calculations and easier implementation of optimization algorithms. However, in 

real-time control applications, more complex dynamic models are employed to precisely simulate transient 

behaviors of the generators. These dynamic models include state equations and time-dependent parameters, enabling 

accurate response to rapid changes in grid conditions and load demands (Dashtdar et al., 2022; Andrey et al., 2024). 

 

Control and Dynamic Modeling Considerations 
Microgrid stability and power quality heavily rely on the effective coordination of multiple components. 

Therefore, dynamic modeling must encompass key control mechanisms such as voltage and frequency regulation, 

which are essential for maintaining power balance and preventing harmful fluctuations. Inverter control strategies, 

including droop control and grid-forming or grid-following modes, enable inverters to operate both independently 

and in coordination, especially during islanded operation. 

Energy management algorithms play a critical role in optimizing generation, storage, and consumption based 

on load demand, available resources, and economic or environmental objectives. Power sharing and synchronization 

techniques ensure equitable and stable distribution of power among different sources and loads. Additionally, 

protection schemes for islanding detection and safe reconnection to the main grid are vital for system security and 

reliability. 

Advanced control modeling often integrates classical PID controllers with modern approaches such as Model 

Predictive Control (MPC), fuzzy logic, and machine learning-based adaptive control systems. These advanced 

methods enhance system responsiveness under nonlinear and rapidly changing conditions, ultimately improving 

microgrid stability and power quality (Sarkaret al., 2020; Nagarajan & Senthilkumar, 2022). 

 

Modeling Granularity and Application Relevance 

The appropriate level of modeling detail, or granularity, is highly dependent on the specific application and 

objectives within a microgrid study. In long-term planning and sizing analyses, simplified and steady-state models 

are generally sufficient, as they prioritize computational efficiency and provide a broad understanding of energy 

balance and capacity requirements. These models typically neglect fast transients and focus on average power flows, 

making them suitable for evaluating feasibility, cost estimation, and resource allocation.In contrast, dynamic 

analysis and stability assessment require more detailed time-domain and nonlinear models that can capture the 

transient behavior of microgrid components (Nagarajan & Senthilkumar, 2022; Anseán et al., 2018). These models 

are essential for studying system response under disturbances, load fluctuations, and control actions, especially in 

microgrids with high penetration of renewable sources and energy storage systems.For real-time simulations and 

hardware-in-the-loop (HIL) testing, model fidelity must be balanced with computational speed to ensure 

responsiveness and real-world applicability. Such applications demand models that are both accurate and efficient, 

allowing for real-time performance evaluation of control systems, protection schemes, and component 

interoperability.Component-specific modeling plays a vital role in ensuring the reliability, stability, and cost-

effectiveness of hybrid renewable microgrids (HRMGs). By accurately representing each subsystem such as 

generators, inverters, batteries, and loads engineers can achieve better integration, coordination, and optimization 

across the microgrid. This detailed modeling is also crucial for developing advanced energy management systems 

and robust control strategies. 

As microgrid architectures become increasingly complex and heterogeneous, hybrid modeling approaches are 

gaining traction. These methods combine physical system modeling with data-driven techniques and artificial 

intelligence to enhance model accuracy and adaptability. By leveraging these integrated models, future microgrid 

designs can achieve higher levels of operational efficiency, resilience to disturbances, and long-term sustainability 

(Perveen et al., 2025; Chen et l., 2025). 

 

 

Optimization Strategies for Hybrid Renewable Microgrids 

 

Optimization plays a pivotal role in the design, operation, control, and planning of hybrid renewable 

microgrids (HRMGs) (Hammedi et al., 2023). Due to the inherent complexity, uncertainty, and multi-objective 

nature of microgrid systems stemming from the variability of renewable energy sources, diverse energy storage 

technologies, dynamic loads, and economic constraintsadvanced optimization techniques are essential to ensure 
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reliable, cost-effective, and sustainable performance (Tahir, 2025). 

Optimization strategies in HRMGs can be broadly categorized based on the objective functions, optimization 

methods, and application domains. This section explores each of these aspects in detail. 

 

Common Optimization Objectives 
Hybrid Renewable Microgrids (HRMGs) optimization frequently involves navigating trade-offs between 

multiple, often conflicting, objectives. At the core of most optimization efforts is the goal of economic efficiency, 

which seeks to minimize the total cost of energy (TCOE). This includes not only initial capital expenditures 

(CAPEX) for equipment and infrastructure, but also ongoing operational expenses (OPEX) such as fuel, 

maintenance, and degradation costs associated with energy storage systems and generation units. 

In parallel, there is increasing emphasis on environmental sustainability. Optimization efforts aim to reduce 

greenhouse gas emissions, lower fossil fuel consumption, and increase the share of renewable energy in the 

generation mix. This aligns with global and local decarbonization goals and supports energy policies that favor low-

emission technologies. 

Technical performance is another critical objective in HRMGs optimization. Reliable system operation requires 

maintaining voltage and frequency stability, minimizing transmission and distribution losses, and ensuring system 

resilience to disturbances or faults. These technical metrics are especially important in islanded or weak-grid 

scenarios, where stability and quality of supply are paramount. 

A further key objective is energy efficiency and autonomy. Maximizing the penetration of renewable energy 

sources, increasing on-site energy self-consumption, and reducing dependency on the main utility grid are all 

targeted to enhance the resilience and sustainability of the microgrid. In remote or off-grid regions, achieving high 

levels of autonomy can be vital for ensuring uninterrupted power supply. 

Given the inherent conflicts among these goals such as the trade-off between cost and environmental impact 

multi-objective optimization (MOO) techniques are widely employed. These methods generate a set of Pareto-

optimal solutions, enabling decision-makers to evaluate and select system configurations or operating strategies 

based on their specific priorities and constraints. By considering stakeholder preferences, MOO supports a more 

balanced and informed approach to microgrid optimization (Zheng et al., 2025; Wang  & Gooi, 2011; Rao et al., 

2022).   

 

Optimization Techniques 

Several optimization methods ranging from classical mathematical models to advanced metaheuristics and 

artificial intelligence have been widely applied in HRMGs studies. 

a) Mathematical Programming Techniques 

Mathematical programming techniques are fundamental tools in the optimization of hybrid renewable 

microgrids, offering accurate and reliable solutions. Linear Programming (LP) and Mixed-Integer Linear 

Programming (MILP) are effective when dealing with linear constraints and objective functions, particularly for 

discrete decision-making such as the on/off status of generators. For example, MILP can be used to optimize the 

scheduling of diesel generators and batteries in a microgrid to minimize fuel costs. 

When the system involves nonlinear relationships such as power flow equations, cost curves, or battery 

dynamics Nonlinear Programming (NLP) and Mixed-Integer Nonlinear Programming (MINLP) are more 

appropriate. For instance, MINLP is essential for accurately modeling the charge/discharge behavior of batteries in a 

solar-powered microgrid. 

Dynamic Programming (DP) is well-suited for sequential and time-dependent decision-making problems, such 

as daily battery scheduling based on solar generation forecasts and load profiles. 

Although these methods provide high-precision results, they can be computationally intensive, especially for 

large-scale or real-time applications. (Tahir, 2025; Katche et al., 2023; Guan & Wang, 2018). 

b) Metaheuristic Algorithms 

Metaheuristic algorithms are advanced optimization techniques that rely on stochastic, population-based search 

processes. Unlike traditional mathematical programming methods that require problem convexity and 

differentiability, metaheuristics are well-suited for solving highly complex, non-linear, non-convex, and multimodal 

optimization problems characteristics commonly found in hybrid renewable microgrids (HRMGs). 

These algorithms mimic natural processes and intelligent behaviors, such as evolution, swarm intelligence, and 

social cooperation, to efficiently explore large and complex solution spaces. For instance, Genetic Algorithms (GA) 

are inspired by natural selection and use operations like crossover and mutation to evolve better solutions over 

generations. Particle Swarm Optimization (PSO) simulates the social behavior of bird flocking or fish schooling, 

where particles adjust their positions based on individual and group experience. Other algorithms, such as Ant 
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Colony Optimization (ACO), Simulated Annealing (SA), Artificial Bee Colony (ABC), and Grey Wolf Optimizer 

(GWO), model the behavior of ants, physical annealing, bee foraging, and wolf hunting, respectively. 

One of the major strengths of metaheuristics is their ability to escape local optima and explore the global 

solution space more effectively. This makes them particularly suitable for multi-objective and highly constrained 

optimization problems in HRMGs, such as optimal sizing of components, energy dispatch, and energy management 

under uncertainty. 

However, metaheuristics come with their own challenges. They often require careful parameter tuning (e.g., 

population size, learning rates, mutation rates), and their convergence behavior can be sensitive to these settings. 

Additionally, because of their stochastic nature, ensuring consistent and reproducible results may require multiple 

runs and statistical validation. 

Despite these limitations, the flexibility and problem-independence of metaheuristic algorithms have made 

them a popular and powerful tool in modern microgrid optimization studies (Chen et al., 2025; Rao et al., 2022; 

Siregar, Mubarok & Mohamed, 2025). 

c) Hybrid Optimization Approaches 

Hybrid optimization methods combine the accuracy of mathematical programming with the flexibility of 

metaheuristics or AI, aiming to improve both solution quality and computational efficiency. For instance, a Genetic 

Algorithm (GA) can first explore the global search space, and then Mixed-Integer Linear Programming (MILP) is 

applied to fine-tune the best solutions locally. 

An example in HRMGs is the hybrid use of Particle Swarm Optimization (PSO) and Dynamic Programming 

(DP) for energy scheduling, where PSO identifies feasible regions and DP ensures optimal daily dispatch. These 

approaches are especially useful in large-scale or multi-objective problems, offering a strong balance between 

exploration and precision (Zhang & Li, 2020). 

d) Artificial Intelligence and Machine Learning 

Artificial Intelligence (AI) and Machine Learning (ML) techniques have become essential tools in the 

optimization of hybrid renewable microgrids, particularly for predictive and real-time applications. These methods 

enable adaptive, data-driven decision-making that improves system performance under uncertainty and dynamic 

conditions. 

Reinforcement Learning (RL) is widely used for adaptive energy management, where the system learns 

optimal control policies through interaction with the environment, without requiring a predefined model. Artificial 

Neural Networks (ANN) are powerful for forecasting tasks, such as predicting load demand and renewable energy 

generation, which are critical for effective scheduling. Fuzzy Logic Systems handle uncertainty and imprecision by 

using rule-based reasoning, making them suitable for optimization problems where exact models are difficult to 

obtain. 

AI/ML methods enhance the flexibility, accuracy, and robustness of microgrid operations, enabling smarter 

and more efficient energy management (Siregar, Mubarok & Mohamed, 2025; Shufian et al., 2025). 

 

Applications of Optimization in HRMGs 

Optimization is applied across several key stages in microgrid lifecycle (Anseán et al., 2018; Mothilal, 2024; 

Mchirgui et al., 2024): 

1.Sizing and Planning: Determining the optimal configuration and capacity of generation and storage units to 

minimize lifecycle cost and emissions. 

2.Energy Management Systems (EMS): Real-time or day-ahead scheduling of generation, storage, and loads to 

meet demand at minimal cost and emission. 

3.Load Forecasting and Demand Response: Predicting load patterns and enabling flexibility to match supply 

fluctuations. 

4.Resilience and Reliability Optimization: Ensuring optimal operation under faults, blackouts, or islanded 

conditions. 

5.Grid Interaction Optimization: Managing energy exchange between the microgrid and utility grid to 

minimize peak demand charges or participate in ancillary service markets (Taherdoost & Madanchian, 2025). 

 

Deterministic vs. Stochastic Optimization 

Deterministic optimization models assume perfect knowledge of all input parameters, such as load demand and 

solar irradiance, making them suitable for simplified planning scenarios. In contrast, stochastic optimization 

methods incorporate uncertainty through probabilistic inputs or scenario analysis, providing more robust solutions 

under realistic operating conditions. Techniques like robust optimization and chance-constrained programming 

further enhance system reliability by accounting for worst-case scenarios while ensuring feasibility and cost-
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effectiveness (Madanchian, 2025). Optimization strategies play a crucial role in unlocking the full potential of 

hybrid renewable microgrids. As these systems become increasingly complex, there is a clear shift toward 

intelligent, hybrid, and adaptive optimization frameworks capable of handling uncertainty, multiple objectives, and 

real-time dynamics. The choice of the appropriate optimization technique depends on the specific application, 

available computational resources, and required accuracy. The next section will focus on energy management 

systems, where many of these optimization principles are practically implemented (Al-Shetwi et al., 2020; Lund et 

al., 2015). 

 

 

Integration Strategies of Hybrid Renewable Microgrids into the Main Grid 

 

The integration of hybrid renewable microgrids (HRMGs) into the main electrical grid presents both significant 

opportunities and challenges (Ahl et al., 2022). Efficient and seamless integration is critical to leverage the benefits 

of microgrids such as improved reliability, sustainability, and resilience while ensuring grid stability, power quality, 

and economic viability. This section provides a detailed overview of the various strategies, technologies, and 

challenges associated with grid integration of HRMGs (Wang & Gooi, 2011; Taherdoost & Madanchian, 2025). 

 

Grid-Connected vs. Islanded Operation Modes 

Hybrid renewable microgrids (HRMGs) operate in two primary modes: in grid-connected mode, the microgrid 

is synchronized with the main grid, allowing bidirectional power flow. It can export excess energy to the grid or 

import power when renewable generation is insufficient. This mode provides economic benefits, improved 

reliability, and access to ancillary services. In contrast, during outages or disturbances in the main grid, the 

microgrid operates in islanded mode, functioning independently to supply local loads. Maintaining stability and 

power quality in this mode is challenging due to the lack of grid support. Smooth and reliable transitions between 

these modes, known as seamless islanding and reconnection, are essential for maintaining system integrity (Al-

Shetwi et al., 2020) 

 

Interconnection Standards and Protocols 

Adherence to industry standards ensures safe and compatible integration of HRMGs. Key standards include: 

1.IEEE 1547: Governs interconnection and interoperability requirements for distributed energy resources 

(DERs) (IEEE Standards Association, 2024). 

2.UL 1741: Specifies safety and performance criteria for inverters and other interconnection equipment 

(Underwriters Laboratories, 2023). 

3.IEC 61850: Provides protocols for communication and automation in electric power systems, facilitating 

advanced control and monitoring (International Electrotechnical Commission, 2025). 

4.IEEE 2030.7: Addresses smart grid interoperability, supporting microgrid integration with enhanced 

cybersecurity (IEEE Standards Association, 2017). 

Compliance with these standards helps in minimizing risks such as islanding detection failure, voltage 

fluctuations, and protection coordination issues. 

 

Power Electronics Interfaces and Control 

Power electronic converters form the interface between HRMGs components and the grid. Their roles include: 

1.Voltage and frequency regulation: Inverters maintain power quality and synchronize with grid parameters. 

2.Active and reactive power control: Dynamic adjustment of power flows to support grid stability. 

3.Fault ride-through capabilities: Ability to remain connected during grid disturbances and support fault 

conditions. 

4.Anti-islanding protection: Detecting grid outages and safely disconnecting the microgrid. 

Advanced inverter control strategies such as grid-forming, grid-following, and grid-supporting modes are 

deployed based on microgrid configuration and operational requirements (IEEE Standards Association, 2017; 

Michailidis, Michailidis & Kosmatopoulos, 2025; IEEE Standard 1547-2018, 2018). 

 

Energy Management and Communication Systems 

Integrated energy management systems (EMS) coordinate generation, storage, and load demand while 

interfacing with utility grid signals, tariffs, and market mechanisms. Key functionalities include: 

1.Demand response and load shifting: Adjusting consumption to match generation and reduce peak loads. 

2.Ancillary services participation: Providing frequency regulation, voltage support, and spinning reserves. 
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3.Forecasting and scheduling: Predicting renewable generation and load profiles for optimal dispatch. 

4.Cybersecurity: Protecting communication channels and control systems from cyber threats. 

Robust communication infrastructures employing protocols like IEC 61850 and IEC 61970 (CIM) enable real-

time data exchange between microgrid components and the grid operator (IRENA, 2021; IEEE Standards 

Association, 2024; International Electrotechnical Commission, 2025). 

 

Challenges in Grid Integration 

Despite advances, several challenges hinder seamless integration of HRMGs: 

1.Intermittency and variability: Fluctuating renewable generation complicates voltage and frequency control. 

2.Protection coordination: Ensuring selectivity and sensitivity of protective devices in hybrid configurations. 

3.Harmonics and power quality issues: Power electronic converters can introduce distortions requiring 

mitigation. 

4.Regulatory and market barriers: Inconsistent policies, tariffs, and lack of standardized market participation 

frameworks. 

5.Technical interoperability: Integrating diverse equipment and communication protocols from multiple 

vendors. 

Addressing these challenges requires comprehensive planning, advanced control algorithms, and collaborative 

regulatory frameworks (Ajiboye et al., 2023; Taherdoost & Madanchian, 2025; Ahl et al., 2022). 

 

Future Trends and Innovations 

Emerging technologies and approaches are shaping the future of microgrid integration: 

1.Smart inverters with autonomous grid support capabilities. 

2.Blockchain-based peer-to-peer energy trading platforms enabling decentralized markets. 

3.Artificial intelligence and machine learning for predictive control and adaptive operation. 

4.Enhanced cybersecurity frameworks for microgrid-to-grid communication. 

5.Hybrid AC/DC microgrids improving efficiency and compatibility with DC loads. 

These innovations promise to enhance microgrid flexibility, reliability, and value in future grid architectures. 

(Kunatsa, Myburgh & De Freitas, 2024; Rzepka, Bischof & Blank, 2021). 

Effective integration of hybrid renewable microgrids into the main grid is essential to unlock their full potential 

for a sustainable and resilient energy future. This requires adherence to standards, advanced power electronics and 

control, sophisticated energy management systems, and overcoming technical and regulatory challenges (Shafiei, 

Seifi & Hagh, 2025; Addo et al., 2025). Ongoing research and development continue to push the boundaries, 

enabling smarter, more autonomous, and economically viable microgrid-grid interactions. 

 

 

Challenges and Future Directions in Hybrid Renewable Microgrid Modeling, Optimization, and Integration 

 

Despite significant advancements in the development of hybrid renewable microgrids (HRMGs), several 

technical, economic, and regulatory challenges remain that hinder their widespread deployment and optimal 

operation (Mchirgui et al., 2024; Tang et al., 2025). This section outlines key challenges in modeling, optimization, 

and integration of HRMGs and discusses promising future research directions to overcome these barriers 

(Taherdoost & Madanchian, 2025). 

 

Modeling Challenges 

1.Complexity and Accuracy Trade-offs: 

Accurate modeling of microgrid components such as renewable generators, storage systems, and loads often 

requires highly detailed nonlinear and dynamic models. However, such models can be computationally intensive and 

unsuitable for real-time applications or large-scale simulations. Balancing model fidelity with computational 

efficiency remains a critical challenge. 

2.Uncertainty and Variability: 

Renewable energy sources and loads exhibit inherent uncertainty and variability due to weather fluctuations 

and stochastic user behavior. Capturing this uncertainty effectively within models is essential for reliable system 

design and operation but remains difficult due to limited data and complexity. 

3.Multi-Domain Interactions: 

HRMGs involve electrical, mechanical, thermal, and sometimes chemical domains (e.g., fuel cells, batteries). 

Integrated multi-physics modeling that captures cross-domain interactions accurately is still an evolving area 
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requiring more research. 

 

Optimization Challenges 

1.Scalability and Computational Burden: 

Optimization problems for HRMGs are often large-scale, nonlinear, and combinatorial. Solving these problems 

within reasonable time frames, especially for real-time or near-real-time control, demands development of efficient 

algorithms and parallel computing techniques. 

2.Multi-Objective and Multi-Stakeholder Optimization: 

Balancing conflicting objectives such as cost, emissions, reliability, and user comfort is complex. Furthermore, 

stakeholders including utilities, consumers, and regulators have diverse priorities, necessitating multi-criteria 

decision-making frameworks. 

3.Uncertainty Handling: 

Incorporating uncertainty in optimization through stochastic programming, robust optimization, or chance 

constraints increases problem complexity. Developing scalable and tractable methods that can handle these 

uncertainties remains an open research topic. 

 

Integration Challenges 

1.Grid Stability and Protection: 

Integrating high shares of intermittent renewables and inverter-based resources challenges grid stability. 

Protection schemes must be redesigned to cope with bidirectional power flows and varying fault current levels. 

2.Communication and Cybersecurity: 

Reliable, low-latency communication infrastructure is essential for coordinated control. At the same time, 

HRMGs face increased vulnerability to cyber-attacks, necessitating robust cybersecurity measures. 

3.Regulatory and Market Barriers: 

Lack of standardized regulations, tariff structures, and market mechanisms for microgrid participation in 

electricity markets impedes integration and economic viability. 

4.Interoperability: 

Ensuring interoperability among heterogeneous equipment, communication protocols, and control systems 

from various manufacturers remains a key challenge (IRENA; 2021; Andrey et al., 2024; Taherdoost & 

Madanchian, 2025).  

 

Future Research Directions 

1.Advanced Hybrid Modeling Techniques: 

Combining physics-based, data-driven, and machine learning models to enhance accuracy and computational 

efficiency while capturing uncertainties. 

2.Intelligent and Adaptive Optimization Algorithms: 

Development of real-time, scalable, and self-learning optimization frameworks that can adapt to changing 

conditions and uncertainties. 

3.Resilient and Self-Healing Microgrids: 

Designing microgrids capable of autonomous fault detection, isolation, and recovery to improve reliability 

under grid disturbances and cyber threats. 

4.Integrated Energy Management with Demand Flexibility: 

Incorporating advanced demand response, electric vehicles, and flexible loads to improve microgrid efficiency 

and grid support. 

5.Blockchain and Decentralized Control: 

Leveraging blockchain technology for secure, transparent peer-to-peer energy trading and decentralized control 

architectures. 

6.Standardization and Policy Development: 

Advocating for uniform standards, policies, and market frameworks to facilitate seamless microgrid integration 

and operation. 

Addressing the complex challenges in modeling, optimization, and integration of hybrid renewable microgrids 

requires interdisciplinary research and innovative technological solutions (Rivera-Barrera et al., 2017; Cavus, 2025). 

Future efforts should focus on enhancing model fidelity, developing adaptive and scalable optimization methods, 

improving grid interaction mechanisms, and establishing supportive regulatory frameworks. These advances will be 

crucial to accelerate the deployment of HRMGs as a cornerstone of a sustainable and resilient energy future (Chen et 

al., 2025; Addo et al., 2025). 
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Literature Survery And Future Prospects 

 

Literature Survey   

Table 5 is an exhaustive review of previous works on modelling, optimization, and grid integration. The table 

summarizes methodologies, objectives, and research gaps. 

 

Table 5. Review of related past works 

Reference What Was Done Method Used Research Gap 

(Liu & Wu, 

2020). 

Proposed a two-stage deep 

reinforcement learning (DRL) 

framework for inverter-based 

Volt-VAR control in active 

distribution networks under 

uncertainties. 

Two-stage DRL with 

adversarial training 

(offline + online) 

Did not consider coordination 

challenges with HRMGs and 

integration of renewable 

resources. 

(Hossain et 

al., 2022) 

Developed model-based deep 

reinforcement learning for 

emergency control strategies 

targeting short-term voltage 

stability (STVS). 

Model-based DRL with 

surrogate dynamic model 

+ imitation learning 

Focused on STVS only; lacked 

integration with renewable 

resources and HRMGs 

optimization. 

(Munir et 

al., 2020) 

Developed a wavelet-SVM model 

for transient fault detection in 

grids. 

Wavelet transform + 

SVM 

Limited to fault detection; no 

integration with energy 

management systems. 

(Alhanaf, 

Balik & 

Farsadi, 

2023) 

ANN-based fault detection in 

PMU-enabled grids. 

Artificial Neural 

Networks (ANN) 

Focused only on fault detection; 

ignored economic dispatch. 

(Senthil 

Pandian, 

2024). 

Hybrid SVM-ANN models for 

real-time fault classification. 

SVM + ANN Did not address scalability for 

large-scale HRMs. 

(Mahar et 

al., 2022) 

ANN-based power quality 

compensator for voltage sag 

mitigation. 

ANN + Rule-based 

control 

No integration with renewable 

sources or storage. 

(Alhamrouni 

et al., 2024) 

Reviewed AI applications in 

power system stability and control. 

Literature review + 

Comparative analysis 

Focused on stability; lacked 

HRM-specific optimization 

insights. 

(Senyuk et 

al., 2023) 

Deep learning for transient 

stability assessment in power 

systems. 

Convolutional Neural 

Networks (CNN) 

Limited to stability analysis; 

excluded cost or emission 

optimization. 

(Xu, Zhou & 

Zhao, 2024) 

Combined TCN-LSTM for short-

term voltage stability. 

Temporal CNN + LSTM Did not integrate DERs or 

storage systems. 

(Adebayo, 

Aborisade & 

Akinola, 

2020) 

ANN-based fault detection for 

Nigerian 330 kV lines. 

ANN + Travelling wave 

theory 

Limited to fault detection; no grid 

interconnection analysis. 

(Salihu, 

2021) 

ANN-based fault identification in 

Onitsha-New Haven line. 

ANN + Signal processing Narrow focus on faults; no 

optimization or cost analysis. 

(Nwani & 

Onoh, 2022) 

Modeled insulation defects in the 

Onitsha-New Haven line. 

MATLAB/Simulink 

simulations 

Did not propose mitigation 

strategies or optimization 

frameworks. 

(Okakwu & 

Ogujor, 

2017) 

Transient stability analysis of 

Nigeria’s 330 kV grid. 

PSCAD/EMTDC 

simulations 

Outdated; no integration of 

ML/AI techniques. 

(Han, Lee & 

Kim, 2021). 

Adaptive auto-reclosing using 

harmonic signatures. 

Harmonic analysis + 

Adaptive logic 

Limited to transmission lines; 

excluded microgrids or DERs. 

(Tien, Gono 

& 

Multifunctional DVR for power 

quality improvement. 

Dynamic Voltage 

Restorer (DVR) + PI 

No renewable energy integration. 
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Reference What Was Done Method Used Research Gap 

Leonowicz, 

2018) 

control 

(Siregar et 

al., 2023) 

PSO-ANN for voltage sag 

mitigation in HRMs. 

PSO + ANN Ignored battery degradation and 

grid synchronization. 

(Anitha & 

Jyothsna, 

2019) 

BOA-based unified power quality 

conditioner for DG systems. 

Butterfly Optimization 

Algorithm (BOA) 

Limited to single-objective 

optimization. 

(Benachaiba 

& Ferdi, 

2008) 

DVR for voltage quality 

improvement. 

PI control + DVR Did not consider renewable 

sources or hybrid systems. 

(Kangarlu et 

al., 2010) 

Transformerless DVR topology for 

voltage sag mitigation. 

Multilevel inverter design No integration with HRMs or 

optimization frameworks. 

(Reddy, 

Ganapathy 

& 

Manikandan, 

2022). 

Fuzzy-PI controller for DVR in 

distribution systems. 

Fuzzy logic + PI control Limited to distribution networks; 

excluded transmission-level 

HRMs. 

(Jabbar et 

al., 2019) 

Fuzzy neural controller for DVR 

in HRMs. 

Fuzzy logic + ANN Did not address grid 

interconnection stability. 

(Munawar, 

Alam & Ali, 

2023) 

AI-based energy prediction for 

solar systems. 

ANN + Regression 

models 

Focused only on solar; excluded 

wind, storage, or hybrid 

optimization. 

(Alharbi & 

Allohibi, 

2024) 

Hybrid classification for student 

performance (non-energy). 

ML classifiers (SVM, 

DT) 

Irrelevant to HRMs; included for 

methodology comparison. 

(Sharada et 

al., 2024) 

Adaptive ant colony clustering in 

WSNs. 

Ant Colony Optimization 

(ACO) 

Focused on WSNs; no link to 

HRM energy management. 

(Eddin 

Za'ter, 

Sajadi & 

Hodge, 

2024) 

Semi-supervised ML for power 

system security. 

Multi-task learning Did not address HRM-specific 

challenges like bidirectional 

power flow. 

(Zhang et 

al., 2021) 

Deep learning for short-term 

voltage stability. 

CNN + LSTM Excluded economic or 

environmental optimization. 

(Ibrahim, 

Musa & 

Adekunle, 

2023) 

Harmonic-based SVM for 

transient fault detection. 

SVM + Harmonic 

analysis 

Limited to HV networks; no 

microgrid application. 

(Li et al., 

2024) 

Proposed a Transformer-based 

deep learning model for short-term 

voltage stability assessment, 

addressing class imbalance with 

CWGAN-GP. 

Transformer + CWGAN-

GP 

Focused on stability; did not 

consider economic/environmental 

optimization. 

(Hossain et 

al., 2023) 

Applied deep reinforcement 

learning for co-optimization of 

Volt-VAR services in distribution 

networks. 

DRL-based co-

optimization 

No comprehensive HRM 

integration or multi-objective 

framework. 

(Lv et al., 

2024) 

Investigated deep learning-based 

optimization of grid-connected 

voltage support technologies for 

new energy stations. 

CNN-LSTM hybrid 

optimization 

Focused mainly on voltage; 

lacked HRM integration with 

storage and hybrid sources. 

 

Future Directions in Hybrid Renewable Microgrids (HRMGs) Research 

The integration of artificial intelligence (AI) and cutting-edge machine learning (ML) techniques is emerging 

as a game-changer in the evolution of hybrid renewable microgrid (HRMGs) systems. Recent advancements in deep 
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learning and reinforcement learning, as highlighted by (Shojaei, Aghamolaei & Ghaani, 2024), are enabling adaptive 

energy management systems capable of making real-time decisions in the face of unpredictable renewable 

generation and fluctuating load demands. These intelligent systems can continuously refine energy dispatch 

strategies, predict and schedule maintenance activities, and initiate automated responses to faults thus moving 

beyond the limitations of traditional rule-based or deterministic models. 

In parallel, the development of digital twin technology is offering new possibilities for real-time system 

modeling and predictive analytics. As demonstrated by (Mchirgui et al., 2024), digital twins create high-fidelity 

virtual replicas of physical HRMGs that synchronize with live sensor data. This allows operators to simulate 

performance scenarios, forecast equipment aging, and optimize asset utilization over the microgrid’s lifecycle. Such 

advancements have significant implications for enhancing operational reliability, especially in isolated or under-

resourced regions where physical access and maintenance are constrained. 

Energy storage innovation also plays a pivotal role in shaping the next generation of HRMGs. Emerging 

storage technologies such as solid-state batteries and hydrogen-based systems promise to dramatically improve 

scalability, safety, and sustainability. Research by Chen et al. (Tang et al., 2025; Areola, Adebiyi & Moloi, 2025) 

into lithium-sulfur battery chemistries reveals the potential for achieving energy densities beyond 500 Wh/kg, which 

could overcome current storage limitations related to capacity and durability. Additionally, the incorporation of 

hybrid storage systems, including supercapacitors for handling rapid energy fluctuations, as explored by (Han, Lee 

& Kim, 2021), offers a robust solution to mitigate the inherent intermittency of solar and wind resources. 

Policy frameworks and market mechanisms will be critical to translating these technological advancements 

into large-scale deployment. Regulatory initiatives like the European Union’s Green Deal and strategic planning 

from the International Renewable Energy Agency (IRENA) highlight the importance of supportive governance in 

facilitating HRMGs adoption. As discussed in (Ferreira et al., 2024), effective policy must tackle issues such as 

tariff structures for peer-to-peer energy exchange, mechanisms for carbon pricing, and risk-sharing models for 

investment in decentralized infrastructure. 

Looking further ahead, the convergence of HRMGs with blockchain-based transactive energy systems holds 

transformative potential. Pilot projects such as the Brooklyn Microgrid illustrate how distributed ledger technologies 

can empower consumers to participate in decentralized energy markets. These systems use consensus algorithms to 

maintain grid stability while promoting energy democratization and local economic participation. 

These research frontiers offer a holistic roadmap for advancing HRMGs deployment. By merging AI-driven 

control, next-generation storage, digital modeling, progressive policies, and decentralized trading platforms, future 

HRMGs are poised to become integral to resilient, low-carbon energy systems that are both technically robust and 

socially inclusive (Taherdoost & Madanchian, 2025; Miao, Ma & Zhou, 2025). 

 

 

Conclusion 

 

This review has systematically examined the state-of-the-art strategies for component-specific modeling, 

optimization, and integration of hybrid renewable microgrids (HRMGs) into the main grid. As the global energy 

landscape shifts toward sustainable and decentralized generation, HRMGs have emerged as a key solution to 

enhance energy resilience, reduce carbon footprints, and improve operational flexibility. 

The modeling of individual components including photovoltaic arrays, wind turbines, energy storage systems, 

and backup generators forms the backbone of effective microgrid analysis and control. Accurate and adaptable 

models that balance fidelity and computational efficiency are essential to realistically capture the dynamic behavior 

and constraints of each subsystem. 

Optimization strategies play a critical role in addressing the inherent complexities of HRMGs, including 

intermittency, multi-objective trade-offs, and uncertainty. A wide range of methods, from classical mathematical 

programming to advanced metaheuristics and artificial intelligence, have been developed to optimize system design, 

scheduling, and real-time energy management. Hybrid optimization approaches that integrate these techniques show 

particular promise in achieving scalable and robust solutions. 

Integration of HRMGs into the main grid requires careful consideration of operational modes, compliance with 

interconnection standards, and deployment of advanced power electronics and control technologies. Effective 

energy management and communication systems are vital to coordinate resources, maintain power quality, and 

participate in emerging electricity markets. However, challenges related to grid stability, protection coordination, 

power quality, regulatory frameworks, and cybersecurity must be continuously addressed. 

Looking forward, ongoing research in hybrid modeling, adaptive optimization, resilient control, and 

decentralized architectures will further enhance the capabilities and deployment potential of HRMGs. Innovations 
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such as machine learning-based forecasting, blockchain-enabled energy trading, and smart inverter functionalities 

are poised to transform microgrid operations. 

The successful realization of hybrid renewable microgrids as integral components of future power systems 

hinges on continued advancements in comprehensive modeling, sophisticated optimization, and seamless grid 

integration. This holistic approach will enable HRMGs to provide sustainable, reliable, and economically viable 

energy solutions worldwide. 
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