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Abstract: The growing demand for sustainable energy,along with advancements in renewable technologies, has led
to the emergence of hybrid renewable microgrids (HRMGs) as a promising solution for enhancing energy security,
reliability, and environmental performance. This review provides a comprehensive assessment of current strategies
for component-specific modeling, optimization, and integration of HRMGs into the main power grid. First, the study
categorizes key components of HRMGs, including solar photovoltaic systems, wind turbines, energy storage
systems, and backup generators, and analyzes state-of-the-art modeling techniques tailored to each. The review then
explores advanced optimization methods ranging from classical algorithms to artificial intelligence and
metaheuristic approaches for system sizing, energy management, and cost minimization. Furthermore, it examines
the technical, economic, and regulatory aspects of grid integration, highlighting interoperability challenges, control
strategies, and standards for seamless operation. Special attention is given to the role of real-time data analytics and
smart grid technologies in enhancing system adaptability and resilience. The paper concludes by identifying research
gaps and recommending future directions for developing more robust, scalable, and intelligent HRMGs frameworks
aligned with grid modernization goals.
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Introduction

The global transition toward cleaner and more sustainable energy systems has significantly increased interest in
the deployment of Hybrid Renewable Microgrids (HRMGs) (Dawoud, Lin & Okba, 2018). These systems integrate
multiple renewable energy sources such as solar, wind, and biomass with energy storage units and conventional
backup generators, offering a decentralized, flexible, and environmentally friendly alternative to traditional
centralized power generation (Ajiboye et al., 2023) HRMGs are particularly effective in enhancing energy access in
remote areas, improving power reliability, and reducing greenhouse gas emissions (Khan et al., 2025).

As the complexity of these systems grows, so does the need for precise and robust modeling of individual
components (Bihari et al., 2021). Component-specific modeling enables accurate prediction of system behavior,
facilitates optimal design, and supports reliable operation under varying load and environmental conditions
(Chouhan et al., 2024). Moreover, the integration of renewable microgrids with the main utility grid presents both
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opportunities and challenges. On one hand, it can enhance grid resilience, reduce transmission losses, and enable
demand-side management (Khan et al., 2025; Wang et al., 2010). On the other hand, it introduces issues such as
voltage instability, power quality concerns, and the need for advanced control and communication mechanisms
(Azeem et al., 2021).

Optimization plays a critical role in the planning, operation, and control of HRMGs. Modern optimization
techniques, including mathematical programming, heuristic and metaheuristic algorithms, and machine learning-
based approaches, are increasingly being applied to address challenges related to sizing, economic dispatch, and
energy management (Singh et al., 2024; Bouaouda & Sayouti, 2022). These tools help stakeholders strike a balance
between economic efficiency, technical performance, and environmental sustainability (Murty, & Kumar, 2020).

Furthermore, successful integration of HRMGs into the existing grid infrastructure requires consideration of
several technical, regulatory, and operational factors. Real-time monitoring, smart grid technologies, adaptive
control strategies, and standardized communication protocols are essential to ensure seamless coordination between
the microgrid and the central grid (Reich & Oriti, 2021; Mohamed et al., 2022; Gao et al., 2023). A systematic
understanding of these aspects is vital to unlock the full potential of HRMGs in modern energy systems (Barik,
Jaiswal & Das, 2022; Hernandez-Mayoral et al., 2023).

This review aims to provide a holistic and critical assessment of the latest strategies for component-level
modeling, optimization, and integration of HRMGs. By synthesizing recent developments, identifying prevailing
challenges, and highlighting future directions, this paper seeks to contribute to the advancement of intelligent and
sustainable microgrid solutions for a resilient global energy future.

Review Methodology

This study employs a systematic review methodology to analyze and synthesize the latest advancements in
component-level modeling, optimization, and integration strategies for Hybrid Renewable Microgrids (HRMGs)
(Dawoud, Lin & Okba, 2018; Ajiboye et al., 2023). The review process adheres to established guidelines to ensure
transparency, reproducibility, and rigor (Khan et al., 2025).

Literature Search Strategy

An extensive literature search was conducted using multiple academic databases, including Scopus, IEEE
Xplore, and ScienceDirect (Bihari et al., 2021). The search was limited to publications from 2009 to 2025 to capture
the most recent developments in the field (Wang et al., 2010). Core keywords such as "Hybrid Renewable
Microgrid," "optimization techniques,” "component modeling,” and "grid integration”™ were used in various
combinations to identify relevant studies (Azeem et al., 2021).

Inclusion and Exclusion Criteria

The selection criteria for included studies were as follows:

Inclusion Criteria:

1.Studies focusing on HRMGs with an emphasis on modeling, optimization, or integration (Dawoud, Lin &
Okba, 2018; Singh et al., 2024).

2.Publications that present novel methodologies or significant advancements in the field (Bouaouda & Sayouti,
2022).

3.Peer-reviewed journal articles, conference papers, and reputable technical reports (Ajiboye et al., 2023).

Exclusion Criteria:

1.Studies not directly related to HRMGs or those focusing solely on theoretical aspects without practical
applications (Barik, Jaiswal & Das, 2022)

2.Publications prior to 2009 to maintain the relevance and timeliness of the review.

Data Extraction and Analysis

Data from the selected studies were extracted systematically, focusing on key aspects such as:

1.Types of renewable energy sources integrated into HRMGs (Ajiboye et al., 2023; Bihari et al., 2021).

2.0ptimization techniques employed (e.g., metaheuristic algorithms, artificial intelligence methods) (Dawoud,
Lin & Okba, 2018; Bouaouda, & Sayouti, 2022).

3.Modeling approaches for individual components (e.g., photovoltaic systems, battery storage) (Singh et al.,
2024).

4.Strategies for grid integration and hybrid operation modes (Khan et al., 2025; Azeem et al., 2021).
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The extracted data were then categorized and analyzed to identify trends, gaps, and emerging areas of research
(Dawoud, Lin & Okba, 2018; Khan et al., 2025; Barik, Jaiswal & Das, 2022).

Quality Assessment

To ensure the reliability and validity of the included studies, a quality assessment was performed based on
established criteria (Ajiboye et al., 2023; Singh et al., 2024), such as:

1.Methodological rigor and clarity.

2.Relevance to the research questions.

3.Contribution to advancing knowledge in the field.

Studies that met these criteria were included in the final analysis (Dawoud, Lin & Okba, 2018; Ajiboye et al.,
2023; Bihari et al., 2021).

Hybrid Renewable Microgrids (HRMGs)

Definition and Architecture

Hybrid Renewable Microgrids (HRMGs) are decentralized power systems that integrate multiple renewable
energy sources (e.g., photovoltaic (PV) panels, wind turbines, small hydro units, biomass, hydrogen fuel cells) with
energy storage systems (ESS) such as batteries, flywheels, and supercapacitors. In some cases, dispatchable backup
sources such as diesel or natural gas generators are included to ensure supply reliability during prolonged renewable
scarcity (Lasseter, 2011; Alzahrani et al., 2022; Jafari Kaleybar et al., 2024; Kushwaha & Bhattacharjee, 2023).

An HRMG can operate in two primary modes:

Grid-connected mode, in which the microgrid exchanges energy with the main utility grid, exporting surplus
generation or importing power to balance local deficits.

Islanded mode, in which the microgrid disconnects from the utility grid and relies entirely on its internal
resources.

To enable seamless transitions between these modes, HRMGs employ hierarchical control strategies.
Typically, the control architecture is divided into primary control (real-time voltage and frequency stabilization),
secondary control (restoring nominal setpoints), and tertiary control (optimizing power exchange with the main grid)
(Shaikh et al., 2021; Guerrero et al., 2012; Draz, Othman, & El-Fergany, 2024; Yadav, Kumar, & Kumar, 2025).

Hybrid Renewable Microgrids (HRMGs)
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Figure 1. Illustrates a generalized schematic of HRMGs architecture, including energy sources, storage systems,
converters, point of common coupling (PCC), and control layers

Benefits

HRMGs provide several key advantages:
1. Energy security and resilience: By diversifying energy sources and enabling islanded operation, HRMGs
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enhance supply continuity during grid disturbances (Catalan Navarro et al., 2025).

2. Environmental sustainability: High penetration of renewable energy sources contributes to carbon emission
reduction and supports global decarbonization goals (Paraschiv & Paraschiv, 2023).

3. Economic efficiency: Local generation, optimal resource dispatch, and reduced transmission losses lower
operational costs over the system’s lifecycle (Bissiriou et al., 2025).

4. Flexibility and scalability: Modular system design enables expansion to meet growing load demands and
facilitates integration of emerging technologies (Zhang & Wei, 2022).

Challenges

Despite their promise, HRMGs face several challenges:

1. Intermittency of renewables: Variable solar and wind generation requires advanced forecasting and energy
storage strategies (Lafuente-Cacho et al., 2025).

2. Optimal sizing and configuration: Multi-objective optimization is needed to balance technical, economic,
and environmental criteria (Dvijotham, Backhaus & Chertkov, 2011).

3. Power quality and stability: Voltage/frequency deviations and harmonic distortions must be mitigated
through robust control algorithms (Conde, Demition & Honra, 2025).

4. System complexity: Coordinating heterogeneous resources with different dynamic behaviors increases
design and operational complexity (Nkounga, Ndiaye & Ndiaye, 2022).

5. High capital investment and regulatory barriers: The lack of standardized policies, financial incentives, and
skilled personnel hinders widespread deployment (How energy storage is solving the intermittency problem in
renewables)

Applications and Policy Context

HRMGs are increasingly deployed in:

Remote and off-grid communities, where they provide reliable electricity access and reduce dependence on
imported fuels (Agupugo et al., 2022).

Urban smart grids, enhancing resilience, flexibility, and renewable integration (Gellings, 2020).

Climate-vulnerable regions, supporting disaster preparedness and recovery (Akinsooto, Ogundipe & lkemba,
2024).

Policy frameworks and financial instruments such as feed-in tariffs, renewable energy credits, green bonds, and
public-private partnerships are critical for enabling large-scale adoption (Thapar, 2024). Continued advances in
power electronics, communication technologies, and artificial intelligence based energy management systems
(EMS) are expected to further enhance the viability and cost-effectiveness of HRMGs (Energypedia. n.d.).
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Figure 2. Grid-connected vs. islanded operation, PCC, renewable sources, storage units, backup generation,
converters, and hierarchical control layers
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Component-Specific Modeling Approaches in Hybrid Renewable Microgrids

Effective component-level modeling forms the foundation of hybrid renewable microgrids (HRMGs) design,
optimization, and operational planning. Each component within a microgrid renewable energy sources (such as solar
PV and wind turbines), energy storage systems (like batteries or supercapacitors), electrical loads, and backup
generators exhibits unique dynamic behavior, operational constraints, and performance characteristics. Accurately
modeling these components is essential to capture their real-time interactions, support realistic and high-fidelity
simulations, and enable the development of robust energy management strategies. Moreover, precise component
modeling allows for better forecasting, improved system stability, cost-effective operation, and seamless integration
of intermittent energy sources, ultimately ensuring the reliable and efficient performance of HRMGs under varying
conditions (Kotian & Ghahremanlou, 2024; Zhang, Shah, & Papageorgiou, 2019).

Modeling of Renewable Energy Sources

a) Photovoltaic (PV) Systems:

Photovoltaic (PV) systems are generally characterized and modeled based on the current—voltage (I-V)
behavior of solar cells. These |-V characteristics are directly influenced by environmental and intrinsic parameters
such as solar irradiance, cell temperature, series resistance (Rs), and shunt resistance (Rsh).

1.Solar irradiance: Higher irradiance increases the photocurrent and consequently the generated power, while
reduced irradiance leads to a proportional decrease in output power and a shift in the maximum power point (MPP)
(Villalva et al., 2009).

2.Cell temperature: Temperature strongly affects the open-circuit voltage (Voc). An increase in temperature
decreases Voc and overall efficiency, making accurate thermal modeling essential (Belhadj et al., 2025).

3.Series resistance (Rs): High series resistance introduces internal voltage drops, reducing the fill factor (FF)
and system efficiency.

4.Shunt resistance (Rsh): Low shunt resistance increases leakage currents, reduces voltage, and degrades
efficiency (Ishaque & Salam, 2011).

To accurately capture these dependencies, various modeling approaches have been developed. Equivalent
circuit models particularly the single-diode and double-diode models are the most widely used, as they provide a
balance between accuracy and computational complexity.

1.The single-diode model is the simplest and most commonly adopted approach, assuming a dominant
recombination mechanism within the cell. Owing to its simplicity and reliability, it is extensively applied in MPPT
design, rapid system simulations, and inverter-level analysis (Villalva et al., 2009; Belhadj et al., 2025).

2.The double-diode model includes an additional diode to represent recombination both in the bulk and
junction regions, thereby enhancing accuracy under low irradiance and elevated temperature conditions. Although
parameter extraction is more complex, this model is preferred in research and detailed cell-level studies (Ishaque &
Salam, 2011).

3.Empirical and data-driven models, built on experimental or field data, employ statistical curve-fitting or
machine learning algorithms to approximate PV behavior without solving complex semiconductor equations. These
approaches are particularly effective for large-scale PV plant simulations, grid integration studies, and predictive
MPPT optimization, provided that sufficient and diverse data are available (Hameed Al-Hamzawi et al., 2025).

To clarify the assumptions, accuracy, parameter extraction complexity, and application scope of different
modeling approaches, Table 1 presents a detailed comparative summary of PV models.

Table 1. Comparative summary of PV modeling approaches based on assumptions, accuracy, parameter extraction,
and applications

Model Key Accura  Sensitivityto  Paramet Advantage Limitation Typical Refere
Type  Assumpti cy Temperature er S S Applicatio nces
ons and Irradiance  Extracti ns
on
Single- One Good Accurately Moderate Simple, Lower Module-  (Villalv
Diode  dominant  under captures ; computatio  accuracy level aetal,
Model recombina standar irradiance paramete  nally fast,  under low- simulation,  2009;
tion d test effects; rs widely light and inverter Belhadj
mechanis  conditio moderate extracted used high- design, etal.,
m; ns accuracy under  from I-V temperature  real-time 2025)
modeled (STC) temperature curves conditions MPPT

51



Res. J. Engin. Tech. Vol., 2 (1), 47-72, 2025

Model Key Accura  Sensitivityto  Paramet Advantage Limitation Typical Refere
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Models experimen high limited derived minimal n beyond ce Hamza
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data son measured  knowledge  conditions  educationa al.,
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quality)
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Driven representa with nonlinear nton after extensive scale PV d Al-
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Models  relies on nt and irradiance and  size and scalable; lacks simulation,  wi et
historical/  diverse temperature diversity adaptive physical grid al.,
real-time data effectively interpretabi  integration ~ 2025)
data lity studies,
predictive
MPPT
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ied approxim  medium first-order (few simple; accuracy, y sizing, aetal,
Linear ation variations empirical  very low unsuitable  quick grid 2009)
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As Table 1 illustrates, the choice of model depends on the study objective, required accuracy, and
computational constraints.

1.The single-diode model provides the best trade-off between simplicity and accuracy, making it highly
suitable for industrial applications and real-time MPPT algorithms.

2.The double-diode model offers superior accuracy, especially under non-standard conditions, but entails
higher computational complexity and more challenging parameter extraction.

3.Empirical and data-driven models are ideal for fast and large-scale simulations, such as PV plant studies or
grid integration analysis, though their accuracy strongly depends on the quality of available data.

4.Simplified linear models are mostly used for preliminary studies or rough performance estimations, where
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computational efficiency is prioritized over precision.

Such diversity in modeling strategies enables researchers and engineers to select the most appropriate model
based on application requirements ranging from detailed cell-level research to large-scale system optimization.

b) Wind Turbines:

Wind turbine modeling encompasses several interrelated domains, including aerodynamic performance,
mechanical dynamics, and electrical generation. Aerodynamic characteristics are critical in determining the amount
of kinetic energy extracted from the wind. For aerodynamic modeling, in addition to classical methods such as
power curves and Blade Element Momentum (BEM) theory, more advanced models such as CFD and three-
dimensional aerodynamic models are also employed, considering blade geometry, pitch angle, wind speed, and
transient conditions (Sun et al., 2016; Melani et al., 2024).

The mechanical aspect involves the rotational dynamics of the rotor and drivetrain, taking into account inertia,
friction, and shaft stiffness, which affect the transient response and system stability (Harizi, & Benhamed, 2023).

The electrical generation system typically includes generators such as Permanent Magnet Synchronous
Generators (PMSG), each with specific operational characteristics and control requirements. These generators are
often combined with power electronic converters to enable variable-speed operation, grid synchronization, and
power quality control (Van Minh, 2024).

The overall power output of the turbine is generally modeled as a nonlinear function of wind speed,
constrained by cut-in and cut-out wind speeds as well as the rated capacity of the turbine to ensure safe operation
(Milan, Wéchter & Peinke, 2014).

To simulate realistic operating conditions, wind turbine models must also incorporate the stochastic nature of
wind, including turbulence intensity and rapid wind speed fluctuations. These factors significantly influence
transient dynamics, fatigue loads, and control system performance. Time series of real wind data or stochastic wind
field models are often used for this purpose (Bhatt et al., 2023).

Using such comprehensive modeling approaches is essential for the design, optimization, and control of wind
turbines, enabling improved efficiency, reliability, and grid integration (Abootorabi et al., 2024).

Table 2. Comparative Table of Wind Turbine Modeling Approaches

Modeling Key Assumptions Applications References
Approach
Power Curve  Uniform wind, steady flow  Estimation of average power, (Milan, Wéchter & Peinke, 2014;
preliminary design Bhatt et al., 2023; Abootorabi et al.,
2024)
BEM Theory One-dimensional flow, Blade aerodynamic analysis, (Sun et al., 2016; Melani et al.,
limited blade twist pitch angle optimization 2024)
3D CFD Complex flow, turbulence Detailed aerodynamic (Sun et al., 2016; Melani et al.,
analysis, transient load 2024)
assessment
PMSG Permanent magnetic field, Variable-speed operation, (Van Minh, 2024)
Generator advanced control grid integration
Stochastic Temporal and spatial wind Transient load analysis, (Bhatt et al., 2023)
Wind Field variations, turbulence control system design

c) Biomass, Fuel Cells, and Microturbines:

Dispatchable energy sources, such as diesel generators, microturbines, and fuel cells, are typically modeled by
considering their thermodynamic performance characteristics, including fuel consumption rates, startup and
shutdown times, operational efficiencies, and emission profiles (Razmi et al., 2025; Al-Husban et al., 2025). Unlike
intermittent renewable sources such as solar and wind, dispatchable units can adjust their power output on demand,
providing a reliable and controllable supply of electricity essential for balancing supply and demand within
microgrids (Kaldellis & Zafirakis, 2011; Juma, Ayeng'o & Kimambo, 2024).

Biomass:
Biomass conversion pathways include direct combustion, gasification, and biochemical processes, which can
generate electricity, heat, or liquid and gaseous fuels. Conversion efficiency depends on the type of process and
operating conditions, ranging from 20% to 40% for direct electricity generation (Tezer et al., 2022; Balopi et al.,
2025). Greenhouse gas and pollutant emissions also depend on the type of biomass and conversion technology.

Fuel Cells:

Key types include PEMFC, SOFC, and MCFC, each with distinct characteristics. For example, PEMFCs offer
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fast response and relatively high efficiency but require pure hydrogen, while SOFCs have higher electrical and
thermal efficiency but longer startup times (Barbir, 2012; Li, 2025). Modeling typically involves relationships
between electrical current, cell voltage, temperature, and electrical load.

Microturbines:

Microturbines are small gas turbines that can operate on various fuels, including natural gas and biogas. They offer
fast dynamic response, low maintenance, and compact size, although their overall efficiency is generally lower than
large-scale systems (Belrzaeg et al., 2023; Saha & Kastha, 2010).

Comprehensive modeling of these dispatchable units is essential for evaluating the economic and
environmental performance of microgrids, allowing optimization of dispatch strategies, reduction of fuel
consumption, and minimization of emissions, thereby improving overall system sustainability and cost-effectiveness
(Olivares et al., 2014; Khan, Khan & Ahmad, 2025).

Table 3. Comparative Table of Biomass, Fuel Cells, and Microturbines

Technology Electrical GHG Dynamic Microgrid Applications References
Efficiency (%) Emissions Response
Biomass 20-40 Medium to Moderate Electricity and heat (Tezeretal.,
low generation, renewable fuels  2022; Balopi et
al., 2025)
PEMFC 40-60 Low Fast Clean power source, load (Barbir, 2012)
support, electric vehicles
SOFC 50-65 Very low Slow Combined heat and power,  (Barbir, 2012;
industrial applications Li, 2025).
Microturbine 25-35 Medium Fast Industrial and commercial ~ (Belrzaeg et al.,
microgrids, CHP 2023; Saha &
integration Kastha, 2010)

Modeling of Energy Storage Systems

Energy storage systems (ESS), such as lithium-ion batteries, lead-acid batteries, flywheels, and
supercapacitors, play a crucial role in mitigating the mismatch between electricity supply and demand, thereby
enhancing the overall stability and reliability of power systems. These storage technologies enable load shifting,
peak shaving, frequency regulation, and backup power supply, making them indispensable components in modern
microgrids and renewable energy systems (Worku, 2022; Gao & Lu, 2021; Jayakumar et al., 2022; Palau, Mane &
Gomis-Bellmunt, 2025).

Modeling ESS involves several important factors to accurately represent their performance and operational
behavior. Charge and discharge efficiency directly influences the usable energy capacity and overall system
efficiency, as energy losses occur during both processes. State of Charge (SoC) dynamics are critical for tracking
available energy at any given time, ensuring proper management and control of the storage unit. Depth of Discharge
(DoD) limits define the allowable range of battery depletion to prevent damage and extend lifespan. Additionally,
internal losses due to resistance and parasitic reactions, as well as aging effects caused by repeated cycling and
environmental conditions, significantly impact long-term performance and capacity degradation. Roundtrip
efficiency, which measures the ratio of energy retrieved to energy stored, together with lifecycle degradation rates,
are key parameters for evaluating the economic and technical viability of ESS technologies (Worku, 2022; Gao &
Lu, 2021; Jayakumar et al., 2022). Various modeling approaches are employed depending on the desired level of
accuracy and computational complexity. Equivalent circuit models, often consisting of resistor-inductor-capacitor
(RLC) networks, provide a balance between simplicity and fidelity, capturing voltage, current, and thermal
behaviors. Electrochemical models delve deeper into the internal chemical processes and reactions within batteries,
enabling precise predictions of performance and degradation over time. Recently, machine learning-based predictive
models have emerged, leveraging large datasets to forecast system behavior under diverse conditions, thereby
facilitating rapid simulations and adaptive control strategies. Integrating these modeling techniques enables
researchers and engineers to optimize the design, operation, and management of energy storage systems within
complex power networks (Calero et al., 2022; Tu et al., 2023; Wu & Balasingam, 2024; Yang et al., 2023).
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Table 4. Comparative Table of Energy Storage Systems

ESS Charge/Dischar Depth of State of Capacity Common Advantag Disadvantag
Technology ge Efficiency Dischar Charge Degradati Modeling es es
(%) ge (SoC) on Approaches
(DoD)
Lithium-ion 85-95 80-90%  Accurat High Equivalent High High cost,
Battery e circuit model, energy temperature
electrochemi density, sensitivity
cal model long cycle
life
Lead-acid 70-80 50-60% Modera  Moderate Equivalent Low cost,  Low energy
Battery te circuit model mature density,
technolog shorter
y lifespan
Flywheel 85-90 100% Indirect Low Electro- Fast Low energy
mechanical dynamic  density, high
model response, cost
long
lifespan
Supercapacit 95-99 100% Indirect Low Equivalent Very fast ~ Low energy
or circuit model  response,  density, high
long cycle cost
life
Load Modeling

Load profiles in microgrids typically consist of three main categories: critical loads, which require continuous
and uninterrupted power supply (such as medical equipment and communication systems); non-critical loads, which
can tolerate temporary interruptions without significant consequences (like lighting or certain appliances); and
controllable or demand-responsive loads, which can be adjusted or shifted in time based on grid conditions or price
signals.

Accurate modeling of electrical demand must consider several key aspects. First, load consumption varies over
time, following daily and weekly cycles influenced by human activities. Second, stochastic behavior arises due to
unpredictable changes in user demand, appliance usage, and environmental factors. Third, seasonal variations
significantly affect load patterns, especially in heating or cooling demands. Finally, demand response capabilities
allow certain loads to be modulated or deferred, providing flexibility to balance supply and demand.

To address these complexities, different modeling approaches are employed. Statistical models analyze
historical consumption data to extract typical load profiles and quantify variations. These models help in
understanding baseline demand but may not fully capture sudden changes or real-time fluctuations (Chan et al.,
2012; Zheng et al., 2025).

More advanced methods utilize artificial intelligence and machine learning algorithms to develop adaptive
models. These models process real-time data streams, weather forecasts, and occupancy information to predict short-
term load with higher accuracy. Additionally, Al-based models enable dynamic load shaping by controlling
demand-responsive loads, thereby improving the microgrid’s operational efficiency and stability.

This combination of detailed classification and advanced modeling techniques allows for precise representation
of load behavior, which is critical for optimizing microgrid performance and implementing effective demand-side
management strategies (Silva, Khan & Han, 2020).

Modeling of Backup Generators

Diesel and natural gas generators are commonly used as backup sources in hybrid renewable microgrids
(HRMGs) to ensure stability and continuous power supply during periods of reduced or interrupted renewable
energy generation. The models of these generators include various parameters that reflect their actual performance.
One of the key parameters is the fuel consumption curve, which relates the load demand to fuel consumption and is
essential for estimating operational costs and optimizing fuel usage. Additionally, ramp rates indicating how quickly
the generator can increase or decrease its output power are incorporated to account for technical constraints on rapid
load changes (IRENA, 2021; Brooklyn Microgrid Project, 2019).

Furthermore, minimum up and down times are included in the models to prevent frequent start-stop cycles that
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can cause equipment wear and reduce lifespan. Operational costs encompass fuel expenses, maintenance, and other
related costs, forming a significant part of the modeling framework. Emission levels, especially for diesel
generators, are also modeled accurately to assess environmental impacts and ensure compliance with regulations.
For energy optimization studies and long-term planning, simplified linear or piecewise-linear models are often
used because they facilitate faster calculations and easier implementation of optimization algorithms. However, in
real-time control applications, more complex dynamic models are employed to precisely simulate transient
behaviors of the generators. These dynamic models include state equations and time-dependent parameters, enabling
accurate response to rapid changes in grid conditions and load demands (Dashtdar et al., 2022; Andrey et al., 2024).

Control and Dynamic Modeling Considerations

Microgrid stability and power quality heavily rely on the effective coordination of multiple components.
Therefore, dynamic modeling must encompass key control mechanisms such as voltage and frequency regulation,
which are essential for maintaining power balance and preventing harmful fluctuations. Inverter control strategies,
including droop control and grid-forming or grid-following modes, enable inverters to operate both independently
and in coordination, especially during islanded operation.

Energy management algorithms play a critical role in optimizing generation, storage, and consumption based
on load demand, available resources, and economic or environmental objectives. Power sharing and synchronization
techniques ensure equitable and stable distribution of power among different sources and loads. Additionally,
protection schemes for islanding detection and safe reconnection to the main grid are vital for system security and
reliability.

Advanced control modeling often integrates classical PID controllers with modern approaches such as Model
Predictive Control (MPC), fuzzy logic, and machine learning-based adaptive control systems. These advanced
methods enhance system responsiveness under nonlinear and rapidly changing conditions, ultimately improving
microgrid stability and power quality (Sarkaret al., 2020; Nagarajan & Senthilkumar, 2022).

Modeling Granularity and Application Relevance

The appropriate level of modeling detail, or granularity, is highly dependent on the specific application and
objectives within a microgrid study. In long-term planning and sizing analyses, simplified and steady-state models
are generally sufficient, as they prioritize computational efficiency and provide a broad understanding of energy
balance and capacity requirements. These models typically neglect fast transients and focus on average power flows,
making them suitable for evaluating feasibility, cost estimation, and resource allocation.In contrast, dynamic
analysis and stability assessment require more detailed time-domain and nonlinear models that can capture the
transient behavior of microgrid components (Nagarajan & Senthilkumar, 2022; Ansean et al., 2018). These models
are essential for studying system response under disturbances, load fluctuations, and control actions, especially in
microgrids with high penetration of renewable sources and energy storage systems.For real-time simulations and
hardware-in-the-loop (HIL) testing, model fidelity must be balanced with computational speed to ensure
responsiveness and real-world applicability. Such applications demand models that are both accurate and efficient,
allowing for real-time performance evaluation of control systems, protection schemes, and component
interoperability.Component-specific modeling plays a vital role in ensuring the reliability, stability, and cost-
effectiveness of hybrid renewable microgrids (HRMGs). By accurately representing each subsystem such as
generators, inverters, batteries, and loads engineers can achieve better integration, coordination, and optimization
across the microgrid. This detailed modeling is also crucial for developing advanced energy management systems
and robust control strategies.

As microgrid architectures become increasingly complex and heterogeneous, hybrid modeling approaches are
gaining traction. These methods combine physical system modeling with data-driven techniques and artificial
intelligence to enhance model accuracy and adaptability. By leveraging these integrated models, future microgrid
designs can achieve higher levels of operational efficiency, resilience to disturbances, and long-term sustainability
(Perveen et al., 2025; Chen et I., 2025).

Optimization Strategies for Hybrid Renewable Microgrids
Optimization plays a pivotal role in the design, operation, control, and planning of hybrid renewable
microgrids (HRMGs) (Hammedi et al., 2023). Due to the inherent complexity, uncertainty, and multi-objective

nature of microgrid systems stemming from the variability of renewable energy sources, diverse energy storage
technologies, dynamic loads, and economic constraintsadvanced optimization techniques are essential to ensure
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reliable, cost-effective, and sustainable performance (Tahir, 2025).
Optimization strategies in HRMGs can be broadly categorized based on the objective functions, optimization
methods, and application domains. This section explores each of these aspects in detail.

Common Optimization Objectives

Hybrid Renewable Microgrids (HRMGs) optimization frequently involves navigating trade-offs between
multiple, often conflicting, objectives. At the core of most optimization efforts is the goal of economic efficiency,
which seeks to minimize the total cost of energy (TCOE). This includes not only initial capital expenditures
(CAPEX) for equipment and infrastructure, but also ongoing operational expenses (OPEX) such as fuel,
maintenance, and degradation costs associated with energy storage systems and generation units.

In parallel, there is increasing emphasis on environmental sustainability. Optimization efforts aim to reduce
greenhouse gas emissions, lower fossil fuel consumption, and increase the share of renewable energy in the
generation mix. This aligns with global and local decarbonization goals and supports energy policies that favor low-
emission technologies.

Technical performance is another critical objective in HRMGs optimization. Reliable system operation requires
maintaining voltage and frequency stability, minimizing transmission and distribution losses, and ensuring system
resilience to disturbances or faults. These technical metrics are especially important in islanded or weak-grid
scenarios, where stability and quality of supply are paramount.

A further key objective is energy efficiency and autonomy. Maximizing the penetration of renewable energy
sources, increasing on-site energy self-consumption, and reducing dependency on the main utility grid are all
targeted to enhance the resilience and sustainability of the microgrid. In remote or off-grid regions, achieving high
levels of autonomy can be vital for ensuring uninterrupted power supply.

Given the inherent conflicts among these goals such as the trade-off between cost and environmental impact
multi-objective optimization (MOO) techniques are widely employed. These methods generate a set of Pareto-
optimal solutions, enabling decision-makers to evaluate and select system configurations or operating strategies
based on their specific priorities and constraints. By considering stakeholder preferences, MOO supports a more
balanced and informed approach to microgrid optimization (Zheng et al., 2025; Wang & Gooi, 2011; Rao et al.,
2022).

Optimization Techniques

Several optimization methods ranging from classical mathematical models to advanced metaheuristics and
artificial intelligence have been widely applied in HRMGs studies.

a) Mathematical Programming Techniques

Mathematical programming techniques are fundamental tools in the optimization of hybrid renewable
microgrids, offering accurate and reliable solutions. Linear Programming (LP) and Mixed-Integer Linear
Programming (MILP) are effective when dealing with linear constraints and objective functions, particularly for
discrete decision-making such as the on/off status of generators. For example, MILP can be used to optimize the
scheduling of diesel generators and batteries in a microgrid to minimize fuel costs.

When the system involves nonlinear relationships such as power flow equations, cost curves, or battery
dynamics Nonlinear Programming (NLP) and Mixed-Integer Nonlinear Programming (MINLP) are more
appropriate. For instance, MINLP is essential for accurately modeling the charge/discharge behavior of batteries in a
solar-powered microgrid.

Dynamic Programming (DP) is well-suited for sequential and time-dependent decision-making problems, such
as daily battery scheduling based on solar generation forecasts and load profiles.

Although these methods provide high-precision results, they can be computationally intensive, especially for
large-scale or real-time applications. (Tahir, 2025; Katche et al., 2023; Guan & Wang, 2018).

b) Metaheuristic Algorithms

Metaheuristic algorithms are advanced optimization techniques that rely on stochastic, population-based search
processes. Unlike traditional mathematical programming methods that require problem convexity and
differentiability, metaheuristics are well-suited for solving highly complex, non-linear, non-convex, and multimodal
optimization problems characteristics commonly found in hybrid renewable microgrids (HRMGS).

These algorithms mimic natural processes and intelligent behaviors, such as evolution, swarm intelligence, and
social cooperation, to efficiently explore large and complex solution spaces. For instance, Genetic Algorithms (GA)
are inspired by natural selection and use operations like crossover and mutation to evolve better solutions over
generations. Particle Swarm Optimization (PSO) simulates the social behavior of bird flocking or fish schooling,
where particles adjust their positions based on individual and group experience. Other algorithms, such as Ant
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Colony Optimization (ACO), Simulated Annealing (SA), Artificial Bee Colony (ABC), and Grey Wolf Optimizer
(GWO), model the behavior of ants, physical annealing, bee foraging, and wolf hunting, respectively.

One of the major strengths of metaheuristics is their ability to escape local optima and explore the global
solution space more effectively. This makes them particularly suitable for multi-objective and highly constrained
optimization problems in HRMGs, such as optimal sizing of components, energy dispatch, and energy management
under uncertainty.

However, metaheuristics come with their own challenges. They often require careful parameter tuning (e.g.,
population size, learning rates, mutation rates), and their convergence behavior can be sensitive to these settings.
Additionally, because of their stochastic nature, ensuring consistent and reproducible results may require multiple
runs and statistical validation.

Despite these limitations, the flexibility and problem-independence of metaheuristic algorithms have made
them a popular and powerful tool in modern microgrid optimization studies (Chen et al., 2025; Rao et al., 2022;
Siregar, Mubarok & Mohamed, 2025).

¢) Hybrid Optimization Approaches

Hybrid optimization methods combine the accuracy of mathematical programming with the flexibility of
metaheuristics or Al, aiming to improve both solution quality and computational efficiency. For instance, a Genetic
Algorithm (GA) can first explore the global search space, and then Mixed-Integer Linear Programming (MILP) is
applied to fine-tune the best solutions locally.

An example in HRMGs is the hybrid use of Particle Swarm Optimization (PSO) and Dynamic Programming
(DP) for energy scheduling, where PSO identifies feasible regions and DP ensures optimal daily dispatch. These
approaches are especially useful in large-scale or multi-objective problems, offering a strong balance between
exploration and precision (Zhang & Li, 2020).

d) Artificial Intelligence and Machine Learning

Acrtificial Intelligence (Al) and Machine Learning (ML) techniques have become essential tools in the
optimization of hybrid renewable microgrids, particularly for predictive and real-time applications. These methods
enable adaptive, data-driven decision-making that improves system performance under uncertainty and dynamic
conditions.

Reinforcement Learning (RL) is widely used for adaptive energy management, where the system learns
optimal control policies through interaction with the environment, without requiring a predefined model. Artificial
Neural Networks (ANN) are powerful for forecasting tasks, such as predicting load demand and renewable energy
generation, which are critical for effective scheduling. Fuzzy Logic Systems handle uncertainty and imprecision by
using rule-based reasoning, making them suitable for optimization problems where exact models are difficult to
obtain.

AI/ML methods enhance the flexibility, accuracy, and robustness of microgrid operations, enabling smarter
and more efficient energy management (Siregar, Mubarok & Mohamed, 2025; Shufian et al., 2025).

Applications of Optimization in HRMGs

Optimization is applied across several key stages in microgrid lifecycle (Ansean et al., 2018; Mothilal, 2024;
Mchirgui et al., 2024):

1.Sizing and Planning: Determining the optimal configuration and capacity of generation and storage units to
minimize lifecycle cost and emissions.

2.Energy Management Systems (EMS): Real-time or day-ahead scheduling of generation, storage, and loads to
meet demand at minimal cost and emission.

3.Load Forecasting and Demand Response: Predicting load patterns and enabling flexibility to match supply
fluctuations.

4.Resilience and Reliability Optimization: Ensuring optimal operation under faults, blackouts, or islanded
conditions.

5.Grid Interaction Optimization: Managing energy exchange between the microgrid and utility grid to
minimize peak demand charges or participate in ancillary service markets (Taherdoost & Madanchian, 2025).

Deterministic vs. Stochastic Optimization

Deterministic optimization models assume perfect knowledge of all input parameters, such as load demand and
solar irradiance, making them suitable for simplified planning scenarios. In contrast, stochastic optimization
methods incorporate uncertainty through probabilistic inputs or scenario analysis, providing more robust solutions
under realistic operating conditions. Techniques like robust optimization and chance-constrained programming
further enhance system reliability by accounting for worst-case scenarios while ensuring feasibility and cost-
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effectiveness (Madanchian, 2025). Optimization strategies play a crucial role in unlocking the full potential of
hybrid renewable microgrids. As these systems become increasingly complex, there is a clear shift toward
intelligent, hybrid, and adaptive optimization frameworks capable of handling uncertainty, multiple objectives, and
real-time dynamics. The choice of the appropriate optimization technique depends on the specific application,
available computational resources, and required accuracy. The next section will focus on energy management
systems, where many of these optimization principles are practically implemented (Al-Shetwi et al., 2020; Lund et
al., 2015).

Integration Strategies of Hybrid Renewable Microgrids into the Main Grid

The integration of hybrid renewable microgrids (HRMGs) into the main electrical grid presents both significant
opportunities and challenges (Ahl et al., 2022). Efficient and seamless integration is critical to leverage the benefits
of microgrids such as improved reliability, sustainability, and resilience while ensuring grid stability, power quality,
and economic viability. This section provides a detailed overview of the various strategies, technologies, and
challenges associated with grid integration of HRMGs (Wang & Gooi, 2011; Taherdoost & Madanchian, 2025).

Grid-Connected vs. Islanded Operation Modes

Hybrid renewable microgrids (HRMGs) operate in two primary modes: in grid-connected mode, the microgrid
is synchronized with the main grid, allowing bidirectional power flow. It can export excess energy to the grid or
import power when renewable generation is insufficient. This mode provides economic benefits, improved
reliability, and access to ancillary services. In contrast, during outages or disturbances in the main grid, the
microgrid operates in islanded mode, functioning independently to supply local loads. Maintaining stability and
power quality in this mode is challenging due to the lack of grid support. Smooth and reliable transitions between
these modes, known as seamless islanding and reconnection, are essential for maintaining system integrity (Al-
Shetwi et al., 2020)

Interconnection Standards and Protocols

Adherence to industry standards ensures safe and compatible integration of HRMGs. Key standards include:

1.IEEE 1547: Governs interconnection and interoperability requirements for distributed energy resources
(DERSs) (IEEE Standards Association, 2024).

2.UL 1741: Specifies safety and performance criteria for inverters and other interconnection equipment
(Underwriters Laboratories, 2023).

3.IEC 61850: Provides protocols for communication and automation in electric power systems, facilitating
advanced control and monitoring (International Electrotechnical Commission, 2025).

4.1IEEE 2030.7: Addresses smart grid interoperability, supporting microgrid integration with enhanced
cybersecurity (IEEE Standards Association, 2017).

Compliance with these standards helps in minimizing risks such as islanding detection failure, voltage
fluctuations, and protection coordination issues.

Power Electronics Interfaces and Control

Power electronic converters form the interface between HRMGs components and the grid. Their roles include:

1.Voltage and frequency regulation: Inverters maintain power quality and synchronize with grid parameters.

2.Active and reactive power control: Dynamic adjustment of power flows to support grid stability.

3.Fault ride-through capabilities: Ability to remain connected during grid disturbances and support fault
conditions.

4.Anti-islanding protection: Detecting grid outages and safely disconnecting the microgrid.

Advanced inverter control strategies such as grid-forming, grid-following, and grid-supporting modes are
deployed based on microgrid configuration and operational requirements (IEEE Standards Association, 2017;
Michailidis, Michailidis & Kosmatopoulos, 2025; IEEE Standard 1547-2018, 2018).

Energy Management and Communication Systems
Integrated energy management systems (EMS) coordinate generation, storage, and load demand while
interfacing with utility grid signals, tariffs, and market mechanisms. Key functionalities include:
1.Demand response and load shifting: Adjusting consumption to match generation and reduce peak loads.
2.Ancillary services participation: Providing frequency regulation, voltage support, and spinning reserves.
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3.Forecasting and scheduling: Predicting renewable generation and load profiles for optimal dispatch.

4.Cybersecurity: Protecting communication channels and control systems from cyber threats.

Robust communication infrastructures employing protocols like IEC 61850 and IEC 61970 (CIM) enable real-
time data exchange between microgrid components and the grid operator (IRENA, 2021; IEEE Standards
Association, 2024; International Electrotechnical Commission, 2025).

Challenges in Grid Integration

Despite advances, several challenges hinder seamless integration of HRMGs:

1.Intermittency and variability: Fluctuating renewable generation complicates voltage and frequency control.

2.Protection coordination: Ensuring selectivity and sensitivity of protective devices in hybrid configurations.

3.Harmonics and power quality issues: Power electronic converters can introduce distortions requiring
mitigation.

4.Regulatory and market barriers: Inconsistent policies, tariffs, and lack of standardized market participation
frameworks.

5.Technical interoperability: Integrating diverse equipment and communication protocols from multiple
vendors.

Addressing these challenges requires comprehensive planning, advanced control algorithms, and collaborative
regulatory frameworks (Ajiboye et al., 2023; Taherdoost & Madanchian, 2025; Ahl et al., 2022).

Future Trends and Innovations

Emerging technologies and approaches are shaping the future of microgrid integration:

1.Smart inverters with autonomous grid support capabilities.

2.Blockchain-based peer-to-peer energy trading platforms enabling decentralized markets.

3.Artificial intelligence and machine learning for predictive control and adaptive operation.

4.Enhanced cybersecurity frameworks for microgrid-to-grid communication.

5.Hybrid AC/DC microgrids improving efficiency and compatibility with DC loads.

These innovations promise to enhance microgrid flexibility, reliability, and value in future grid architectures.
(Kunatsa, Myburgh & De Freitas, 2024; Rzepka, Bischof & Blank, 2021).

Effective integration of hybrid renewable microgrids into the main grid is essential to unlock their full potential
for a sustainable and resilient energy future. This requires adherence to standards, advanced power electronics and
control, sophisticated energy management systems, and overcoming technical and regulatory challenges (Shafiei,
Seifi & Hagh, 2025; Addo et al., 2025). Ongoing research and development continue to push the boundaries,
enabling smarter, more autonomous, and economically viable microgrid-grid interactions.

Challenges and Future Directions in Hybrid Renewable Microgrid Modeling, Optimization, and Integration

Despite significant advancements in the development of hybrid renewable microgrids (HRMGs), several
technical, economic, and regulatory challenges remain that hinder their widespread deployment and optimal
operation (Mchirgui et al., 2024; Tang et al., 2025). This section outlines key challenges in modeling, optimization,
and integration of HRMGs and discusses promising future research directions to overcome these barriers
(Taherdoost & Madanchian, 2025).

Modeling Challenges

1.Complexity and Accuracy Trade-offs:

Accurate modeling of microgrid components such as renewable generators, storage systems, and loads often
requires highly detailed nonlinear and dynamic models. However, such models can be computationally intensive and
unsuitable for real-time applications or large-scale simulations. Balancing model fidelity with computational
efficiency remains a critical challenge.

2.Uncertainty and Variability:

Renewable energy sources and loads exhibit inherent uncertainty and variability due to weather fluctuations
and stochastic user behavior. Capturing this uncertainty effectively within models is essential for reliable system
design and operation but remains difficult due to limited data and complexity.

3.Multi-Domain Interactions:

HRMGs involve electrical, mechanical, thermal, and sometimes chemical domains (e.g., fuel cells, batteries).
Integrated multi-physics modeling that captures cross-domain interactions accurately is still an evolving area
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requiring more research.

Optimization Challenges

1.Scalability and Computational Burden:

Optimization problems for HRMGs are often large-scale, nonlinear, and combinatorial. Solving these problems
within reasonable time frames, especially for real-time or near-real-time control, demands development of efficient
algorithms and parallel computing techniques.

2.Multi-Objective and Multi-Stakeholder Optimization:

Balancing conflicting objectives such as cost, emissions, reliability, and user comfort is complex. Furthermore,
stakeholders including utilities, consumers, and regulators have diverse priorities, necessitating multi-criteria
decision-making frameworks.

3.Uncertainty Handling:

Incorporating uncertainty in optimization through stochastic programming, robust optimization, or chance
constraints increases problem complexity. Developing scalable and tractable methods that can handle these
uncertainties remains an open research topic.

Integration Challenges

1.Grid Stability and Protection:

Integrating high shares of intermittent renewables and inverter-based resources challenges grid stability.
Protection schemes must be redesigned to cope with bidirectional power flows and varying fault current levels.

2.Communication and Cybersecurity:

Reliable, low-latency communication infrastructure is essential for coordinated control. At the same time,
HRMGs face increased vulnerability to cyber-attacks, necessitating robust cybersecurity measures.

3.Regulatory and Market Barriers:

Lack of standardized regulations, tariff structures, and market mechanisms for microgrid participation in
electricity markets impedes integration and economic viability.

4.Interoperability:

Ensuring interoperability among heterogeneous equipment, communication protocols, and control systems
from various manufacturers remains a key challenge (IRENA; 2021; Andrey et al., 2024; Taherdoost &
Madanchian, 2025).

Future Research Directions

1.Advanced Hybrid Modeling Techniques:

Combining physics-based, data-driven, and machine learning models to enhance accuracy and computational
efficiency while capturing uncertainties.

2.Intelligent and Adaptive Optimization Algorithms:

Development of real-time, scalable, and self-learning optimization frameworks that can adapt to changing
conditions and uncertainties.

3.Resilient and Self-Healing Microgrids:

Designing microgrids capable of autonomous fault detection, isolation, and recovery to improve reliability
under grid disturbances and cyber threats.

4.Integrated Energy Management with Demand Flexibility:

Incorporating advanced demand response, electric vehicles, and flexible loads to improve microgrid efficiency
and grid support.

5.Blockchain and Decentralized Control:

Leveraging blockchain technology for secure, transparent peer-to-peer energy trading and decentralized control
architectures.

6.Standardization and Policy Development:

Advocating for uniform standards, policies, and market frameworks to facilitate seamless microgrid integration
and operation.

Addressing the complex challenges in modeling, optimization, and integration of hybrid renewable microgrids
requires interdisciplinary research and innovative technological solutions (Rivera-Barrera et al., 2017; Cavus, 2025).
Future efforts should focus on enhancing model fidelity, developing adaptive and scalable optimization methods,
improving grid interaction mechanisms, and establishing supportive regulatory frameworks. These advances will be
crucial to accelerate the deployment of HRMGs as a cornerstone of a sustainable and resilient energy future (Chen et
al., 2025; Addo et al., 2025).
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Literature Survery And Future Prospects

Literature Survey
Table 5 is an exhaustive review of previous works on modelling, optimization, and grid integration. The table

summarizes methodologies, objectives, and research gaps.

Table 5. Review of related past works

Reference

What Was Done

Method Used

Research Gap

(Liu & Wu,
2020).

(Hossain et
al., 2022)

(Munir et
al., 2020)

(Alhanaf,
Balik &
Farsadi,

2023)
(Senthil
Pandian,

2024).

(Mahar et

al., 2022)

(Alhamrouni
etal., 2024)

(Senyuk et
al., 2023)

(Xu, Zhou &
Zhao, 2024)
(Adebayo,
Aborisade &
Akinola,
2020)
(Salihu,
2021)
(Nwani &
Onoh, 2022)

(Okakwu &
Oguijor,
2017)
(Han, Lee &
Kim, 2021).
(Tien, Gono
&

Proposed a two-stage deep
reinforcement learning (DRL)
framework for inverter-based

Volt-VAR control in active

distribution networks under

uncertainties.

Developed model-based deep

reinforcement learning for
emergency control strategies
targeting short-term voltage

stability (STVS).
Developed a wavelet-SVM model
for transient fault detection in
grids.
ANN-based fault detection in
PMU-enabled grids.

Hybrid SVM-ANN models for
real-time fault classification.

ANN-based power quality
compensator for voltage sag
mitigation.
Reviewed Al applications in

power system stability and control.

Deep learning for transient
stability assessment in power
systems.

Combined TCN-LSTM for short-
term voltage stability.
ANN-based fault detection for
Nigerian 330 kV lines.

ANN-based fault identification in
Onitsha-New Haven line.
Modeled insulation defects in the
Onitsha-New Haven line.

Transient stability analysis of
Nigeria’s 330 kV grid.

Adaptive auto-reclosing using
harmonic signatures.
Multifunctional DVR for power
quality improvement.

Two-stage DRL with
adversarial training
(offline + online)

Model-based DRL with
surrogate dynamic model
+ imitation learning

Wavelet transform +
SVM

Atrtificial Neural
Networks (ANN)

SVM + ANN

ANN + Rule-based
control

Literature review +
Comparative analysis

Convolutional Neural
Networks (CNN)

Temporal CNN + LSTM

ANN + Travelling wave
theory

ANN + Signal processing

MATLAB/Simulink
simulations

PSCAD/EMTDC
simulations

Harmonic analysis +
Adaptive logic
Dynamic Voltage
Restorer (DVR) + Pl

Did not consider coordination
challenges with HRMGs and
integration of renewable
resources.

Focused on STVS only; lacked
integration with renewable
resources and HRMGs
optimization.

Limited to fault detection; no
integration with energy
management systems.
Focused only on fault detection;
ignored economic dispatch.

Did not address scalability for
large-scale HRMs.

No integration with renewable
sources or storage.

Focused on stability; lacked
HRM-specific optimization
insights.

Limited to stability analysis;
excluded cost or emission
optimization.

Did not integrate DERs or
storage systems.

Limited to fault detection; no grid
interconnection analysis.

Narrow focus on faults; no
optimization or cost analysis.
Did not propose mitigation
strategies or optimization
frameworks.
Outdated; no integration of
ML/AI techniques.

Limited to transmission lines;
excluded microgrids or DERSs.
No renewable energy integration.
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Reference What Was Done Method Used Research Gap
Leonowicz, control
2018)
(Siregar et PSO-ANN for voltage sag PSO + ANN Ignored battery degradation and
al., 2023) mitigation in HRMs. grid synchronization.
(Anitha & BOA-based unified power quality Butterfly Optimization Limited to single-objective
Jyothsna, conditioner for DG systems. Algorithm (BOA) optimization.
2019)
(Benachaiba DVR for voltage quality PI control + DVR Did not consider renewable
& Ferdi, improvement. sources or hybrid systems.
2008)
(Kangarlu et Transformerless DVR topology for  Multilevel inverter design No integration with HRMs or
al., 2010) voltage sag mitigation. optimization frameworks.
(Reddy, Fuzzy-PI controller for DVR in Fuzzy logic + PI control Limited to distribution networks;
Ganapathy distribution systems. excluded transmission-level
& HRMs.
Manikandan,
2022).
(Jabbar et Fuzzy neural controller for DVR Fuzzy logic + ANN Did not address grid
al., 2019) in HRMs. interconnection stability.
(Munawar, Al-based energy prediction for ANN + Regression Focused only on solar; excluded
Alam & Ali, solar systems. models wind, storage, or hybrid
2023) optimization.
(Alharbi & Hybrid classification for student ML classifiers (SVM, Irrelevant to HRMs; included for
Allohibi, performance (non-energy). DT) methodology comparison.
2024)
(Sharada et Adaptive ant colony clustering in ~ Ant Colony Optimization Focused on WSNSs; no link to
al., 2024) WSN:Ss. (ACO) HRM energy management.
(Eddin Semi-supervised ML for power Multi-task learning Did not address HRM-specific
Za'ter, system security. challenges like bidirectional
Sajadi & power flow.
Hodge,
2024)
(Zhang et Deep learning for short-term CNN + LSTM Excluded economic or
al., 2021) voltage stability. environmental optimization.
(Ibrahim, Harmonic-based SVM for SVM + Harmonic Limited to HV networks; no
Musa & transient fault detection. analysis microgrid application.
Adekunle,
2023)
(Lietal., Proposed a Transformer-based Transformer + CWGAN- Focused on stability; did not
2024) deep learning model for short-term GP

consider economic/environmental
voltage stability assessment,

optimization.
addressing class imbalance with
CWGAN-GP.
(Hossain et Applied deep reinforcement DRL-based co- No comprehensive HRM
al., 2023) learning for co-optimization of optimization integration or multi-objective
Volt-VAR services in distribution framework.
networks.

(Lvetal., Investigated deep learning-based CNN-LSTM hybrid Focused mainly on voltage;

2024) optimization of grid-connected optimization lacked HRM integration with

voltage support technologies for

storage and hybrid sources.
new energy stations.

Future Directions in Hybrid Renewable Microgrids (HRMGs) Research

The integration of artificial intelligence (Al) and cutting-edge machine learning (ML) techniques is emerging
as a game-changer in the evolution of hybrid renewable microgrid (HRMGs) systems. Recent advancements in deep
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learning and reinforcement learning, as highlighted by (Shojaei, Aghamolaei & Ghaani, 2024), are enabling adaptive
energy management systems capable of making real-time decisions in the face of unpredictable renewable
generation and fluctuating load demands. These intelligent systems can continuously refine energy dispatch
strategies, predict and schedule maintenance activities, and initiate automated responses to faults thus moving
beyond the limitations of traditional rule-based or deterministic models.

In parallel, the development of digital twin technology is offering new possibilities for real-time system
modeling and predictive analytics. As demonstrated by (Mchirgui et al., 2024), digital twins create high-fidelity
virtual replicas of physical HRMGs that synchronize with live sensor data. This allows operators to simulate
performance scenarios, forecast equipment aging, and optimize asset utilization over the microgrid’s lifecycle. Such
advancements have significant implications for enhancing operational reliability, especially in isolated or under-
resourced regions where physical access and maintenance are constrained.

Energy storage innovation also plays a pivotal role in shaping the next generation of HRMGs. Emerging
storage technologies such as solid-state batteries and hydrogen-based systems promise to dramatically improve
scalability, safety, and sustainability. Research by Chen et al. (Tang et al., 2025; Areola, Adebiyi & Moloi, 2025)
into lithium-sulfur battery chemistries reveals the potential for achieving energy densities beyond 500 Wh/kg, which
could overcome current storage limitations related to capacity and durability. Additionally, the incorporation of
hybrid storage systems, including supercapacitors for handling rapid energy fluctuations, as explored by (Han, Lee
& Kim, 2021), offers a robust solution to mitigate the inherent intermittency of solar and wind resources.

Policy frameworks and market mechanisms will be critical to translating these technological advancements
into large-scale deployment. Regulatory initiatives like the European Union’s Green Deal and strategic planning
from the International Renewable Energy Agency (IRENA) highlight the importance of supportive governance in
facilitating HRMGs adoption. As discussed in (Ferreira et al., 2024), effective policy must tackle issues such as
tariff structures for peer-to-peer energy exchange, mechanisms for carbon pricing, and risk-sharing models for
investment in decentralized infrastructure.

Looking further ahead, the convergence of HRMGs with blockchain-based transactive energy systems holds
transformative potential. Pilot projects such as the Brooklyn Microgrid illustrate how distributed ledger technologies
can empower consumers to participate in decentralized energy markets. These systems use consensus algorithms to
maintain grid stability while promoting energy democratization and local economic participation.

These research frontiers offer a holistic roadmap for advancing HRMGs deployment. By merging Al-driven
control, next-generation storage, digital modeling, progressive policies, and decentralized trading platforms, future
HRMGs are poised to become integral to resilient, low-carbon energy systems that are both technically robust and
socially inclusive (Taherdoost & Madanchian, 2025; Miao, Ma & Zhou, 2025).

Conclusion

This review has systematically examined the state-of-the-art strategies for component-specific modeling,
optimization, and integration of hybrid renewable microgrids (HRMGSs) into the main grid. As the global energy
landscape shifts toward sustainable and decentralized generation, HRMGs have emerged as a key solution to
enhance energy resilience, reduce carbon footprints, and improve operational flexibility.

The modeling of individual components including photovoltaic arrays, wind turbines, energy storage systems,
and backup generators forms the backbone of effective microgrid analysis and control. Accurate and adaptable
models that balance fidelity and computational efficiency are essential to realistically capture the dynamic behavior
and constraints of each subsystem.

Optimization strategies play a critical role in addressing the inherent complexities of HRMGs, including
intermittency, multi-objective trade-offs, and uncertainty. A wide range of methods, from classical mathematical
programming to advanced metaheuristics and artificial intelligence, have been developed to optimize system design,
scheduling, and real-time energy management. Hybrid optimization approaches that integrate these techniques show
particular promise in achieving scalable and robust solutions.

Integration of HRMGs into the main grid requires careful consideration of operational modes, compliance with
interconnection standards, and deployment of advanced power electronics and control technologies. Effective
energy management and communication systems are vital to coordinate resources, maintain power quality, and
participate in emerging electricity markets. However, challenges related to grid stability, protection coordination,
power quality, regulatory frameworks, and cybersecurity must be continuously addressed.

Looking forward, ongoing research in hybrid modeling, adaptive optimization, resilient control, and
decentralized architectures will further enhance the capabilities and deployment potential of HRMGs. Innovations
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such as machine learning-based forecasting, blockchain-enabled energy trading, and smart inverter functionalities
are poised to transform microgrid operations.

The successful realization of hybrid renewable microgrids as integral components of future power systems
hinges on continued advancements in comprehensive modeling, sophisticated optimization, and seamless grid
integration. This holistic approach will enable HRMGs to provide sustainable, reliable, and economically viable
energy solutions worldwide.
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